Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Cerami, Giovanna; Molle, Riccardo
Multiple positive solutions for singularly perturbed elliptic problems in exterior domains. Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 20 no. 5 (2003), p. 759-777
Texte intégral djvu | pdf | Analyses MR 1995501 | Zbl 01975933 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPC_2003__20_5_759_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] Bahri A., Lions P.L., On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (3) (1997) 365-413.
Numdam |  MR 1450954 |  Zbl 0883.35045
[2] Bahri A., Li Y.Y., On a min-max procedure for the existence of a positive solution for certain scalar field equations in RN, Rev. Mat. Iberoamericana 6 (1–2) (1990) 1-15.  MR 1086148 |  Zbl 0731.35036
[3] Benci V., Cerami G., Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal. 99 (1987) 283-300.  MR 898712 |  Zbl 0635.35036
[4] Benci V., Cerami G., Existence of positive solutions of the equation −Δu+a(x)u=u(N+2)/(N−2) in RN, J. Funct. Anal. 88 (1) (1990) 90-117.  Zbl 0705.35042
[5] Berestycki H., Lions P.L., Nonlinear scalar fields equations – I. Existence of a ground-state, Arch. Rational Mech. Anal. 82 (1983) 313-346.  MR 695535 |  Zbl 0533.35029
[6] Cerami G., Maniscalco C., Multiple positive solutions for a singularly perturbed Dirichlet problem in “geometrically trivial” domains, Topol. Methods Nonlin. Anal. 19 (1) (2002) 63-76.  Zbl 1094.35501
[7] Cerami G., Passaseo D., Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with “rich” topology, Nonlinear Analysis TMA 18 (2) (1992) 109-119.  Zbl 0810.35024
[8] Cerami G., Passaseo D., Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains, Nonlinear Analysis TMA 24 (11) (1995) 1533-1547.  MR 1328581 |  Zbl 0845.35026
[9] G. Cerami, D. Passaseo, Effect of concentrating potentials in some singularly perturbed problems, Calculus of Variations and PDE, to appear.  MR 1989833 |  Zbl 01969061
[10] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in RN, in: Mathematical Analysis and Applications, Part A, Advances in Mathematics Supplementary Studies, 7-A, Academic Press, 1981, pp. 369-402.  MR 634248 |  Zbl 0469.35052
[11] Grossi M., Passaseo D., Nonlinear elliptic Dirichlet problems in exterior domains: the role of geometry and topology of the domain, Comm. Appl. Nonlinear Anal. 2 (2) (1995) 1-31.  MR 1326704 |  Zbl 0863.35035
[12] Kwong M.K., Uniqueness of positive solutions of Δuu+up=0, Arch. Rational Mech. Anal. 105 (1989) 243-266.  Zbl 0676.35032
[13] Molle R., Musso M., Passaseo D., Positive solutions for a class of nonlinear elliptic problems in RN, Proc. Roy. Soc. Edinburgh Sect. A 130 (1) (2000) 141-166.  MR 1742584 |  Zbl 0947.35062
[14] Molle R., Passaseo D., On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains, Discrete Contin. Dynam. Systems 4 (3) (1998) 445-454.  MR 1612740 |  Zbl 0951.35052
[15] Molle R., Passaseo D., Multiple solutions of nonlinear elliptic Dirichlet problems in exterior domains, Nonlinear Anal. Ser. A: Theory Methods 39 (4) (2000) 447-462.  MR 1725399 |  Zbl 0939.35071
[16] Strauss W.A., Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149-162.
Article |  MR 454365 |  Zbl 0356.35028
[17] Struwe M., Variational Methods – Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990.  MR 1078018 |  Zbl 0746.49010
Copyright Cellule MathDoc 2014 | Crédit | Plan du site