Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent
Andre, Nelly; Bauman, Patricia; Phillips, Dan
Vortex pinning with bounded fields for the Ginzburg–Landau equation. Annales de l'I.H.P. Analyse non linéaire, 20 no. 4 (2003), p. 705-729
Texte intégral djvu | pdf | Analyses Zbl 1040.35108 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPC_2003__20_4_705_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] A. Aftalion, E. Sandier, S. Serfaty, Pinning phenomena in the Ginzburg–Landau model of superconductivity, Preprint.  MR 1826348
[2] Bethuel F., The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (3–4) (1991) 153-206.  MR 1120602 |  Zbl 0756.46017
[3] Chapman S.J., Du Q., Gunzburger M.D., A Ginzburg–Landau type model of superconducting/normal junctions including Josephson junctions, Europ. J. Appl. Math. 6 (1995) 97-114.  MR 1331493 |  Zbl 0843.35120
[4] Chapman S.J., Richardson G., Vortex pinning by inhomogeneities in type II superconductors, Phys. D 108 (4) (1997) 397-407.  MR 1474691 |  Zbl 1039.82510
[5] Giorgi T., Phillips D., The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359.  MR 1664763 |  Zbl 0920.35058
[6] Jaffe A., Taubes C., Vortices Monopoles, Birkhäuser, 1980.  MR 614447 |  Zbl 0457.53034
[7] Jerrard R., Lower bounds for generalized Ginzburg–Landau functionals, SIAM J. Math. Anal. 30 (4) (1999) 721-746.  MR 1684723 |  Zbl 0928.35045
[8] Jimbo S., Morita Y., Ginzburg–Landau equations and stable solutions in a rotational domain, SIAM J. Math. Anal. 27 (5) (1996) 1360-1385.  MR 1402445 |  Zbl 0865.35016
[9] Jimbo S., Zhai J., Ginzburg–Landau equation with magnetic effect: non-simply-connected domains, J. Math. Soc. Japan 50 (3) (1998) 663-684.
Article |  MR 1626354 |  Zbl 0912.58011
[10] Likharev K., Superconducting weak links, Rev. Mod. Phys. 51 (1979) 101-159.
[11] E. Sandier, S. Serfaty, Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field, Annals IHP, Analyse non linéaire, to appear.
Numdam |  MR 1743433 |  Zbl 0947.49004
[12] E. Sandier, S. Serfaty, On the energy of type II superconductors in the mixed phase, Rev. Math. Phys., to appear.  MR 1794239 |  Zbl 0964.49006
[13] Rubinstein J., Sternberg P., Homotopy classification of minimizers of the Ginzburg–Landau energy and the existence of permanent currents, Comm. Math. Phys. 179 (1) (1996) 257-263.
Article |  MR 1395224 |  Zbl 0860.35131
[14] Schoen R., Uhlenbeck K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (2) (1983) 253-268.  MR 710054 |  Zbl 0547.58020
Copyright Cellule MathDoc 2014 | Crédit | Plan du site