Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Chen, Gui-Qiang; Perthame, Benoît
Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 20 no. 4 (2003), p. 645-668
Texte intégral djvu | pdf | Analyses MR 1981403 | Zbl 1031.35077

URL stable: http://www.numdam.org/item?id=AIHPC_2003__20_4_645_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] Bénilan P., Carrillo J., Wittbold P., Renormalized entropy solutions of scalar conservation laws, Ann. Sc. Norm. Sup. Pisa 29 (2000) 313-327.
Numdam |  MR 1784177 |  Zbl 0965.35021
[2] Bouchut F., Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Ration. Mech. Anal. 157 (2001) 75-90.  MR 1822415 |  Zbl 0979.35032
[3] Brenier Y., Résolution d'équations d'évolution quasilinéaires en dimensions N d'espace à l'aide d'équations linéaires en dimensions N+1, J. Differential Equations 50(3) (1982) 375-390.  MR 723577 |  Zbl 0549.35055
[4] Brézis H., Crandall M.G., Uniqueness of solutions of the initial-value problem for ut−Δϕ(u)=0, J. Math. Pure Appl. (9) 58 (2) (1979) 153-163.  Zbl 0408.35054
[5] Bustos M.C., Concha F., Bürger R., Tory E.M., Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory, Kluwer Academic, Dordrecht, 1999.  MR 1747460 |  Zbl 0936.76001
[6] Carrillo J., Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal. 147 (1999) 269-361.  MR 1709116 |  Zbl 0935.35056
[7] Chavent G., Jaffre J., Mathematical Models and Finite Elements for Reservoir Simulation, North Holland, Amsterdam, 1986.  Zbl 0603.76101
[8] Chen G.-Q., DiBenedetto E., Stability of entropy solutions to the Cauchy problem for a class of nonlinear hyperbolic-parabolic equations, SIAM J. Math. Anal. 33 (2001) 751-762.  MR 1884720 |  Zbl 1027.35080
[9] Cockburn B., Dawson C., Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimension, in: MAFELAP 1999 (Uxbridge), The Mathematics of Finite Elements and Applications, 10, Elsevier, Oxford, 1999, pp. 225-238.  MR 1801979 |  Zbl 0960.65107
[10] DiBenedetto E., Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl. 130 (1982) 131-176.  MR 663969 |  Zbl 0503.35018
[11] Douglis J., Dupont T., Ewing R., Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer. Anal. 16 (1979) 503-522.  MR 530483 |  Zbl 0411.65064
[12] Espedal M.S., Fasano A., Mikelić A., Filtration in Porous Media and Industrial Applications, Lecture Notes in Math., 1734, Springer-Verlag, Berlin, 2000.  Zbl 0954.00053
[13] Eymard R., Gallouët T., Herbin R., Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation, Chinese Ann. Math. Ser. B 16 (1995) 1-14.  MR 1338923 |  Zbl 0830.35077
[14] R. Eymard, T. Gallouët, R. Herbin, A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Preprint, 2001.  MR 1917365
[15] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.  MR 737190 |  Zbl 0562.35001
[16] Gilding B.H., Improved theory for a nonlinear degenerate parabolic equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (4) (1989) 165-224.
Numdam |  MR 1041895 |  Zbl 0702.35140
[17] Karlsen K.H., Risebro N.H., On convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, 35 (2) (2001) 239-270.
Numdam |  MR 1825698 |  Zbl 1032.76048
[18] Kruzhkov S., First order quasilinear equations with several space variables, Mat. Sbornik 123 (1970) 228-255, Engl. Transl.: , Math. USSR Sb. 10 (1970) 217-273.  Zbl 0215.16203
[19] Lions P.-L., Perthame B., Tadmor E., Formulation cinétique des lois de conservation scalaires multidimensionnelles, C. R. Acad. Sci. Paris, Série I Math. 312 (1991) 97-102.  MR 1086510 |  Zbl 0729.49007
[20] Lions P.-L., Perthame B., Tadmor E., A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc. 7 (1994) 169-191.  MR 1201239 |  Zbl 0820.35094
[21] Perthame B., Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure, J. Math. Pure Appl. 77 (1998) 1055-1064.  MR 1661021 |  Zbl 0919.35088
[22] B. Perthame, Kinetic Formulations of Conservation Laws, Oxford Univ. Press, Oxford (to appear).  MR 2064166 |  Zbl 1030.35002
[23] Perthame B., Bouchut F., Kruzhkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc. 350 (1998) 2847-2870.  MR 1475677 |  Zbl 0955.65069
[24] Volpert A.I., Hudjaev S.I., Cauchy's problem for degenerate second order quasilinear parabolic equations, Mat. Sbornik 78 (120) (1969) 374-396, Engl. Transl.: , Math. USSR Sb. 7 (3) (1969) 365-387.  MR 264232 |  Zbl 0191.11603
Copyright Cellule MathDoc 2014 | Crédit | Plan du site