Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent
Silva, Elves A. B.; Xavier, Magda S
Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents. Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 20 no. 2 (2003), p. 341-358
Texte intégral djvu | pdf | Analyses MR 1961520 | Zbl 1030.35081 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPC_2003__20_2_341_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] Alves C.O., Gonçalves J.V., Existence of positive solutions for m-Laplacian equations RN involving critical Sobolev exponents, Nonlinear Anal. TMA 32 (1998) 53-70.  MR 1491613 |  Zbl 0892.35062
[2] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381.  MR 370183 |  Zbl 0273.49063
[3] Ambrosetti A., Struwe M., A note on the problem −Δu=λu+u|u|2−2, Manuscripta Math. 54 (1986) 373-379.  Zbl 0596.35043
[4] Anane A., Simplicité et isolation de la première valeur propre du p-Laplacien avec poids, C. R. Acad. Sci. Paris, Ser. I 305 (1987) 725-728.  MR 920052 |  Zbl 0633.35061
[5] Bartolo P., Benci V., Fortunato D., Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity, Nonlinear Anal. TMA 7 (9) (1983) 981-1012.  Zbl 0522.58012
[6] Brézis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983) 437-477.  MR 709644 |  Zbl 0541.35029
[7] Capozzi A., Fortunato D., Palmieri G., An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré, Analyse Non Linéaire 2 (6) (1985) 463-470.
Numdam |  MR 831041 |  Zbl 0612.35053
[8] Cerami G., Fortunato D., Struwe M., Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré, Analyse Non Linéaire 1 (1984) 341-350.
Numdam |  MR 779872 |  Zbl 0568.35039
[9] Costa D.G., Silva E.A.B., A note on problems involving critical Sobolev exponents, Differential and Integral Equations 8 (3) (1995) 673-679.  MR 1306583 |  Zbl 0812.35046
[10] DeFigueiredo D.G., The Ekeland Variational Principle with Applications and Detours, Springer-Verlag, New York, 1989.
[11] Drábek P., Huang Y.X., Multiplicity of positive solutions for some quasilinear elliptic equation in RN with critical Sobolev exponent, J. Differential Equations 140 (1997) 106-132.  MR 1473856 |  Zbl 0902.35035
[12] Folland G.B., Real Analysis, Wiley, 1984.  MR 767633 |  Zbl 0924.28001
[13] Fucik S., John O., Necas J., On the existence of Schauder basis in Sobolev spaces, Comment. Math. Univ. Carolin. 13 (1972) 163-175.
Article |  MR 306890 |  Zbl 0231.46064
[14] Garcia Azorero J., Peral Alonso I., Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc. 323 (2) (1991) 877-895.  MR 1083144 |  Zbl 0729.35051
[15] Ghoussoub N., Yuan C., Multiple solutions for quasilinear PDES involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (12) (2000) 5703-5743.  MR 1695021 |  Zbl 0956.35056
[16] Guedda M., Veron L., Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. TMA 13 (8) (1989) 879-902.  MR 1009077 |  Zbl 0714.35032
[17] Gazzola F., Ruf B., Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations, Advances in Differential Equations 2 (4) (1997) 555-572.  MR 1441856 |  Zbl 1023.35508
[18] Lindenstrauss J., Tzafriri L., Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.  MR 500056 |  Zbl 0852.46015
[19] Lions P.L., The concentration-compactness principle in the calculus of variations. The limit case, part 1, 2, Rev. Mat. Iberoamericana 1 (1985) 145-201, pp. 45–121.  MR 850686 |  Zbl 0704.49005
[20] Marti J.T., Introduction to the Theory of Bases, Springer-Verlag, New York, 1969.  MR 438075 |  Zbl 0191.41301
[21] Rabinowitz P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math., 65, AMS, Providence, RI, 1986.  MR 845785 |  Zbl 0609.58002
[22] E.A.B. Silva, Critical point theorems and applications to differential equations, Ph.D. Thesis, University of Wisconsin-Madison, 1988.
[23] Silva E.A.B., Linking theorems and applications to semilinear elliptic problems at resonance, Nonlinear Anal. TMA 16 (1991) 455-477.  MR 1093380 |  Zbl 0731.35042
[24] Silva E.A.B., Soares S.H.M., Quasilinear Dirichlet problems in RN with critical growth, Nonlinear Anal. TMA 43 (2001) 1-20.  MR 1784441 |  Zbl 01539287
[25] Wei Z., Wu X., A multiplicity result for quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. TMA 18 (6) (1992) 559-567.  MR 1154480 |  Zbl 0762.35034
Copyright Cellule MathDoc 2014 | Crédit | Plan du site