Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Cingolani, Silvia; Vannella, Giuseppina
Critical groups computations on a class of Sobolev Banach spaces via Morse index. Annales de l'I.H.P. Analyse non linéaire, 20 no. 2 (2003), p. 271-292
Texte intégral djvu | pdf | Analyses MR 1961517 | Zbl 1023.58004 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPC_2003__20_2_271_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] Arcoya D., Boccardo L., Critical points for multiple integrands of the calculus of variations, Arch. Rat. Mech. Anal. 134 (1996) 249-274.  MR 1412429 |  Zbl 0884.58023
[2] Benci V., D'Avenia P., Fortunato D., Pisani L., Solitons in several space dimensions: a Derrick's problem and infinitely many solutions, Arch. Rat. Mech. Anal. 154 (2000) 297-324.  MR 1785469 |  Zbl 0973.35161
[3] Benci V., Fortunato D., Pisani L., Soliton-like solutions of a Lorentz invariant equation in dimension 3, Math. Phys. 3 (1998) 315-344.  MR 1626832 |  Zbl 0921.35177
[4] Chang K., Morse theory on Banach space and its applications to partial differential equations, Chin. Ann. of Math. 4B (1983) 381-399.  MR 742038 |  Zbl 0534.58020
[5] Chang K., Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston, 1993.  MR 1196690 |  Zbl 0779.58005
[6] Chang K., Morse theory in nonlinear analysis, in: Ambrosetti A., Chang K.C., Ekeland I. (Eds.), Nonlinear Functional Analysis and Applications to Differential Equations, Word Scientific, Singapore, 1998.  MR 1703528 |  Zbl 0960.58006
[7] Cingolani S., Vannella G., Some results on critical groups for a class of functionals defined on Sobolev Banach spaces, Rend. Acc. Naz. Lincei 12 (2001) 1-5.  MR 1898461 |  Zbl 1072.58005
[8] Corvellec J.N., Degiovanni M., Nontrivial solutions of quasilinear equations via nonsmooth Morse theory, J. Differential Equations 136 (1997) 268-293.  MR 1448826 |  Zbl 01025921
[9] Dibenedetto E., C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis TMA 7 (1983) 827-850.  Zbl 0539.35027
[10] Egnell H., Existence an nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rat. Mech. Anal. 104 (1988) 57-77.  MR 956567 |  Zbl 0675.35036
[11] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1998.  Zbl 1042.35002
[12] Ioffe A.D., On lower semicontinuity of integral functionals I and II, SIAM J. Control Optim. 15 (1977) 521-538, and 991–1000.  MR 637234 |  Zbl 0361.46037
[13] Ladyzhenskaya O.A., Ural'tseva N.N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.  MR 244627 |  Zbl 0164.13002
[14] Lancelotti S., Morse index estimates for continuous functionals associated with quasilinear elliptic equations, Adv. Differential Equations 7 (2002) 99-128.  MR 1867706 |  Zbl 1035.58010
[15] Mawhin J., Willem M., Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer-Verlag, New York, 1989.  MR 982267 |  Zbl 0676.58017
[16] Mercuri F., Palmieri G., Problems in extending Morse theory to Banach spaces, Boll. UMI 12 (1975) 397-401.  MR 405494 |  Zbl 0323.58009
[17] Palais R., Morse theory on Hilbert manifolds, Topology 2 (1963) 299-340.  MR 158410 |  Zbl 0122.10702
[18] Smale S., Morse theory and a non-linear generalization of the Dirichlet problem, Ann. Math. 80 (1964) 382-396.  MR 165539 |  Zbl 0131.32305
[19] Spanier E.H., Algebraic Topology, McGraw-Hill, New York, 1966.  MR 210112 |  Zbl 0145.43303
[20] Tolksdorf P., Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126-150.  MR 727034 |  Zbl 0488.35017
[21] Tolksdorf P., On the Dirichlet problem for a quasilinear equations in domains with conical boundary points, Comm. Part. Differential Equations 8 (1983) 773-817.  MR 700735 |  Zbl 0515.35024
[22] Tromba A.J., A general approach to Morse theory, J. Differential Geom. 12 (1977) 47-85.  MR 464304 |  Zbl 0344.58012
[23] Uhlenbeck K., Morse theory on Banach manifolds, J. Funct. Anal. 10 (1972) 430-445.  MR 377979 |  Zbl 0241.58002
Copyright Cellule MathDoc 2014 | Crédit | Plan du site