Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Siconolfi, Antonio
Almost continuous solutions of geometric Hamilton–Jacobi equations. Annales de l'I.H.P. Analyse non linéaire, 20 no. 2 (2003), p. 237-269
Texte intégral djvu | pdf | Analyses Zbl 1029.35067

URL stable: http://www.numdam.org/item?id=AIHPC_2003__20_2_237_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] Bardi M., Capuzzo Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi Equations, Birkhäuser, Boston, 1997.  MR 1484411 |  Zbl 0890.49011
[2] Bardi M., Crandall M.G., Evans L.C., Souganidis P.E., Viscosity Solutions and Applications, Springer-Verlag, Berlin, 1997.
[3] Barles G., Perthame B., Exit time problems in optimal control and vanishing viscosity method, SIAM J. Control Optim. 26 (1988) 1133-1148.  MR 957658 |  Zbl 0674.49027
[4] Barles G., Discontinuous viscosity solutions of first order of Hamilton–Jacobi equations: a guided visit, Nonlinear Anal. 20 (1993) 1123-1134.  MR 1216503 |  Zbl 0816.35081
[5] Barles G., Solutions de Viscosité des Équations de Hamilton–Jacobi, Springer-Verlag, Paris, 1994.  MR 1613876 |  Zbl 0819.35002
[6] Barron E.N., Jensen R., Semicontinuous viscosity solutions of Hamilton–Jacobi equations with convex Hamiltonians, Comm. Partial Differential Equations 15 (1990) 1713-1742.  MR 1080619 |  Zbl 0732.35014
[7] Chen Y.G., Giga Y., Goto S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation, J. Differential Geom. 33 (1991) 749-786.  MR 1100211 |  Zbl 0696.35087
[8] Clarke F.H., Optimization and Nonsmooth Analysis, Wiley, New York, 1983.  MR 709590 |  Zbl 0582.49001
[9] Evans L.C., Ishii H., Differential games and nonlinear first order PDE in bounded domains, Manuscripta Math. 49 (1984) 109-139.
Article |  MR 767202 |  Zbl 0559.35013
[10] Evans L.C., Souganidis P., Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations, Indiana Univ. Math. J. 33 (1984) 773-797.  MR 756158 |  Zbl 1169.91317
[11] Frankowska H., Lower semicontinuous solutions of Hamilton–Jacob–Bellman equations, SIAM J. Control. Optim. 31 (1993) 257-272.  MR 1200233 |  Zbl 0796.49024
[12] Y. Giga, M.H. Sato, A level set approach to semicontinuous viscosity solutions for Cauchy problems, Preprint, 1999.  MR 1843285
[13] Ishii H., Perron's method for Hamilton–Jacobi equations, Duke Math. J. 55 (1987) 369-384.
Article |  MR 894587 |  Zbl 0697.35030
[14] Kelley J.L., General Topology, Van Nostrand, Princeton, 1955.  MR 70144 |  Zbl 0066.16604
[15] Oxtoby J.C., Measure and Category, Springer-Verlag, New York, 1971.  MR 584443 |  Zbl 0217.09201
[16] Rockafellar R.T., Generalized directional derivatives and subgradients of nonconvex functions, Can. J. Math. 32 (1980) 257-280.  MR 571922 |  Zbl 0447.49009
[17] S. Samborski, Extension of nonlinear partial differential expressions and viscosity solutions. An useful space, Preprint, 2000.
[18] A. Siconolfi, Metric character of Hamilton–Jacobi equations, Trans. Amer. Math. Soc., to appear.  MR 1953535 |  Zbl 1026.35027
[19] A. Siconolfi, Representation formulae and comparison results for geometric Hamilton–Jacobi equations, Preprint, 2001.
Copyright Cellule MathDoc 2014 | Crédit | Plan du site