Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Souplet, Philippe; Weissler, Fred B
Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state. Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 20 no. 2 (2003), p. 213-235
Texte intégral djvu | pdf | Analyses MR 1961515 | Zbl 1029.35106 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPC_2003__20_2_213_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] Cazenave T., Weissler F.B., Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z. 228 (1998) 83-120.  MR 1617975 |  Zbl 0916.35109
[2] Dohmen C., Hirose M., Structure of positive radial solutions to the Haraux–Weissler equation, Nonlinear Anal. TMA 33 (1998) 51-69.  MR 1623045 |  Zbl 0934.34028
[3] Galaktionov V.A., Vazquez J.L., Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1997) 1-67.  MR 1423231 |  Zbl 0874.35057
[4] Haraux A., Weissler F.B., Non-uniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982) 167-189.  MR 648169 |  Zbl 0465.35049
[5] Joseph D.D., Lundgren T.S., Quasilinear Dirichlet problems driven by positive sources, Arch. Rat. Mech. Anal. 49 (1973) 241-269.  MR 340701 |  Zbl 0266.34021
[6] Peletier L.A., Terman D., Weissler F.B., On the equation Δu+1/2, Arch. Rat. Mech. Anal. 94 (1986) 83-99.  Zbl 0615.35034
[7] Vazquez J.L., Domain of existence and blowup for the exponential reaction-diffusion equation, Indiana Univ. Math. J. 48 (1999) 677-709.  MR 1722813 |  Zbl 0928.35080
[8] Weissler F.B., Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation, Arch. Rat. Mech. Anal. 91 (1986) 231-245.  MR 806003 |  Zbl 0614.35043
[9] Weissler F.B., Lp-energy and blow-up for a semilinear heat equation, Proc. Symp. Pure Math. Part II 45 (1986) 545-551.  MR 843641 |  Zbl 0631.35049
[10] Yanagida E., Uniqueness of rapidly decaying solutions of the Haraux–Weissler equation, J. Differential Equations 127 (1996) 561-570.  MR 1389410 |  Zbl 0856.34058
Copyright Cellule MathDoc 2014 | Crédit | Plan du site