Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Desjardins, B.; Grenier, E.
Linear instability implies nonlinear instability for various types of viscous boundary layers. Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 20 no. 1 (2003), p. 87-106
Texte intégral djvu | pdf | Analyses MR 1958163 | Zbl 01901028 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPC_2003__20_1_87_0

Bibliographie

[1] Desjardins B., Grenier E., Reynolds.m a package to compute critical Reynolds numbers, 1998 , http://www.dmi.ens.fr/equipes/edp/Reynolds/reynolds.html.
[2] Dormy E., Desjardins B., Grenier E., Stability of mixed Ekman–Hartmann boundary layers, Nonlinearity 12 (2) (1999) 181-199.  MR 1677778 |  Zbl 0939.35151
[3] Dormy E., Desjardins B., Grenier E., Instability of Ekman–Hartmann boundary layers, with application to the fluid flow near the core-mantle boundary, Physics of the Earth and Planetary Interiors 123 (2001) 15-26.
[4] Friedlander S., Strauss W., Vishik M., Nonlinear instability in an ideal fluid, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 187-209.
Numdam |  MR 1441392 |  Zbl 0874.76026
[5] Gisclon M., Serre D., Study of boundary conditions for a strictly hyperbolic system via parabolic approximation, C. R. Acad. Sci. Paris Ser. I Math. 319 (4) (1994) 377-382.  MR 1289315 |  Zbl 0808.35075
[6] Greenspan H.P., The Theory of Rotating Fluids, Cambridge Monographs on Mechanics and Applied Mathematics, 1969.  Zbl 0182.28103
[7] Grenier E., On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math. 53 (2000) 1067-1091.  MR 1761409 |  Zbl 1048.35081
[8] Grenier E., Guès O., Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems, J. Differential Equations 143 (1) (1998) 110-146.  MR 1604888 |  Zbl 0896.35078
[9] Grenier E., Masmoudi N., Ekman layers of rotating fluids, the case of well prepared initial data, Comm. Partial Differential Equations 22 (1997) 953-975.  MR 1452174 |  Zbl 0880.35093
[10] Guo Y., Strauss W., Instability of periodic BGK equilibria, Comm. Pure Appl. Math. 48 (1995) 861-894.  MR 1361017 |  Zbl 0840.45012
[11] Guo Y., Strauss W., Nonlinear instability of double-humped equilibria, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 339-352.
Numdam |  MR 1340268 |  Zbl 0836.35130
[12] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer, Berlin, 1981.  MR 610244 |  Zbl 0456.35001
[13] Iooss G., Nielsen H.B., True H., Bifurcation of the stationary Ekman flow into a stable periodic flow, Arch. Rational Mech. Anal. 68 (3) (1978) 227-256.  MR 509226 |  Zbl 0395.76045
[14] Lilly D.K., On the instability of the Ekman boundary layer, J. Atmos. Sci. 23 (1966) 481-494.
[15] Majda A., Compressible Fluid Flows Systems of Conservation Laws in Several Variables, Appl. Math. Sci., 53, Springer, Berlin, 1984.  MR 748308 |  Zbl 0537.76001
[16] Serre D., L1 -stability of travelling waves in scalar conservation laws, Exp. No. VIII, 13 pp., Semin. Equ. Dériv. Partielles, Ecole Polytech., Palaiseau, 1999.
Numdam |  MR 1721326 |  Zbl 1063.35520
[17] Serre D., Systèmes de lois de conservations, I et II, Diderot Editeur, Paris, 1996.  MR 1459988
[18] Shizuta Y., On the classical solutions of the Boltzmann equation, Comm. Pure Appl. Math. 36 (1983) 705-754.  MR 720591 |  Zbl 0515.35002
[19] Vidav I., Spectra of perturbed semigroups with applications to transport theory, J. Math. Anal. Appl. 30 (1970) 264-279.  MR 259662 |  Zbl 0195.13704
[20] Yudovitch V.I., Non-stationary flow of a perfect non-viscous fluid, Zh. Vych. Math. 3 (1963) 1032-1066.
Copyright Cellule MathDoc 2014 | Crédit | Plan du site