Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matičres de ce fascicule | Article précédent | Article suivant
Cortázar, Carmen; del Pino, Manuel; Elgueta, Manuel
Uniqueness and stability of regional blow-up in a porous-medium equation. Annales de l'I.H.P. Analyse non linéaire, 19 no. 6 (2002), p. 927-960
Texte intégral djvu | pdf | Analyses MR 1939091 | Zbl 1018.35062

URL stable: http://www.numdam.org/item?id=AIHPC_2002__19_6_927_0

Bibliographie

[1] Cortázar C., Elgueta M., Felmer P., Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation, Comm. P.D.E. 21 (1996) 507-520.  MR 1387457 |  Zbl 0854.35033
[2] Cortázar C., Elgueta M., Felmer P., Uniqueness of positive solutions of Δu+f(u)=0 in RN, N≥3, Arch. Rat. Mech. Anal. 142 (1998) 127-141.  Zbl 0912.35059
[3] Cortázar C., Elgueta M., Felmer P., On a semilinear elliptic problem in RN with a non-lipschitzian nonlinearity, Adv. Differential Equations 1 (2) (1996) 199-218.  MR 1364001 |  Zbl 0845.35031
[4] Cortázar C., del Pino M., Elgueta M., On the blow-up set for ut=Δum+um, m>1, Indiana Univ. Math. J. 47 (1998) 541-561.  Zbl 0916.35056
[5] Cortázar C., del Pino M., Elgueta M., The problem of uniqueness of the limit in a semilinear heat equation, Comm. Partial Differential Equations 24 (1999) 2147-2172.  MR 1720758 |  Zbl 0940.35107
[6] Feireisl E., Petzeltova H., Convergence to a ground state as threshold phenomenos in nonlinear parabolic equations, Differential Integral Equations 10 (1997) 181-196.  MR 1424805 |  Zbl 0879.35023
[7] Feireisl E., Simondon F., Convergence for degenerate parabolic equations, J. Differential Equations 152 (2) (1999) 439-466.  MR 1674569 |  Zbl 0928.35086
[8] E. Feireisl, F. Simondon, Convergence for semilinear degenerate parabolic equations in several space dimensions, Preprint.  MR 1800136
[9] Fermanian Kammerer C., Merle F., Zaag H., Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view, Math. Ann. 317 (2000) 347-387.  MR 1764243 |  Zbl 0971.35038
[10] Fujita H., On the blowing-up of solutions of the Cauchy problem for ut=Δu+u1+α, J. Fac. Sci. Univ. Tokyo 13 (1966) 109-124.  Zbl 0163.34002
[11] Galaktionov V., On a blow-up set for the quasilinear heat equation ut=(uσux)x+uσ+1, J. Differential Equations 101 (1993) 66-79.  Zbl 0802.35065
[12] Galaktionov V., Blow-up for quasilinear heat equations with critical Fujita's exponent, Proc. Roy. Soc. Edinburgh 124A (1994) 517-525.  MR 1286917 |  Zbl 0808.35053
[13] Galaktionov V., Peletier L.A., Asymptotic behaviour near finite-time extinction for the fast difussion equation, Arch. Rat. Mech. Anal. 139 (1997) 83-98.  MR 1475779 |  Zbl 0885.35058
[14] Galaktionov V., Vazquez J.L., Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 (1) (1997) 1-67.  MR 1423231 |  Zbl 0874.35057
[15] Giga Y., Kohn R., Characterizing blow-up using similarity variables, Indiana Univ. Math. J. 36 (1987) 1-40.  MR 876989 |  Zbl 0601.35052
[16] Giga Y., Kohn R., Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure Appl. Math. 42 (1989) 845-884.  MR 1003437 |  Zbl 0703.35020
[17] Gui C., Symmetry of the blow-up set of a porous medium equation, Comm. Pure Appl. Math. 48 (1995) 471-500.  MR 1329829 |  Zbl 0827.35014
[18] Hale J., Raugel G., Convergence in gradient-like and applications, Z. Angew. Math. Phys. 43 (1992) 63-124.  MR 1149371 |  Zbl 0751.58033
[19] Haraux A., Polacik P., Convergence to a positive equilibrium for some nonlinear evolution equations in a ball, Acta Math. Univ. Comeniane 61 (1992) 129-141.  MR 1205867 |  Zbl 0824.35011
[20] Korevaar N., Mazzeo R., Pacard F., Schoen R., Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Mat. 135 (2) (1999) 233-272.  MR 1666838 |  Zbl 0958.53032
[21] Ladyzenskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, 1968.  MR 241822 |  Zbl 0174.15403
[22] Matano H., Nonincrease of the lap number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo 1A 29 (1982) 401-411.  MR 672070 |  Zbl 0496.35011
[23] Ni W.-M., Takagi I., Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993) 247-281.
Article |  MR 1219814 |  Zbl 0796.35056
[24] Merle F., Zaag H., Stability of the blow-up profile for equations of the type ut=Δu+|u|p−1u, Duke Math. J. 86 (1997) 143-195.
Article |  Zbl 0872.35049
[25] Merle F., Zaag H., Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math. 51 (1998) 139-196.  MR 1488298 |  Zbl 0899.35044
[26] Polacik P., Rybakowski K.P., Nonconvergent bounded trajectories in semilinear heat equations, J. Differential Equations 124 (1996) 472-494.  MR 1370152 |  Zbl 0845.35054
[27] Samarskii A., Galaktionov V., Kurdyumov V., Mikhailov A., Blow-up in Problems for Quasilinear Parabolic Equations, Nauka, Moscow, 1987, in Russian.
[28] Simon L., Asymptotics for a class of non-linear evolution equations with applications to geometric problems, Ann. of Math. 118 (1983) 525-571.  MR 727703 |  Zbl 0549.35071
[29] Velázquez J., Characterizing blow-up using similarity variables, Indiana Univ. Math. J. 42 (1993) 445-476.  MR 1237055 |  Zbl 0802.35073
Copyright Cellule MathDoc 2014 | Crédit | Plan du site