Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Hernández, Jesús; Mancebo, Francisco J; Vega, José M
On the linearization of some singular, nonlinear elliptic problems and applications. Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 19 no. 6 (2002), p. 777-813
Texte intégral djvu | pdf | Analyses MR 1939086 | Zbl 1020.35065

URL stable: http://www.numdam.org/item?id=AIHPC_2002__19_6_777_0

Bibliographie

[1] Adams R.A., Sobolev Spaces, Academic Press, 1975.  MR 450957 |  Zbl 0314.46030
[2] Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959) 623-727.  MR 125307 |  Zbl 0093.10401
[3] Amann H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976) 620-709.  MR 415432 |  Zbl 0345.47044
[4] Ambrosetti A., Brezis H., Cerami G., Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994) 519-543.  MR 1276168 |  Zbl 0805.35028
[5] Aronson D., Crandall M.G., Peletier L.A., Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Analysis TMA 16 (1982) 1001-1022.  MR 678053 |  Zbl 0518.35050
[6] Bandle C., Pozio M.A., Tesei A., The asymptotic behavior of the solutions of degenerate parabolic equations, Trans. Amer. Math. Soc. 303 (1987) 487-501.  MR 902780 |  Zbl 0633.35041
[7] Berestycki H., Nirenberg L., Varadhan S.R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994) 47-92.  MR 1258192 |  Zbl 0806.35129
[8] Bertsch M., Rostamian R., The principle of linearized stability for a class of degenerate diffusion equations, J. Differential Equations 57 (1985) 373-405.  MR 790282 |  Zbl 0583.35061
[9] Boccardo L., Orsina L., Sublinear elliptic equations in L1, Houston Math. J. 20 (1994) 99-114.  MR 1272564 |  Zbl 0803.35047
[10] Brezis H., Kamin S., Sublinear elliptic equations in Rn, Manuscripta Math. 74 (1992) 87-106.
Article |  MR 1141779 |  Zbl 0761.35027
[11] Brezis H., Oswald L., Remarks on sublinear elliptic equations, Nonlinear Analysis TMA 10 (1986) 55-64.  MR 820658 |  Zbl 0593.35045
[12] Chow S.N., Hale J.K., Methods of Bifurcation Theory, Springer-Verlag, 1982.  MR 660633 |  Zbl 0487.47039
[13] Clément Ph., de Figueiredo D.G., Mitidieri E., A priori estimates for positive solutions of semilinear elliptic systems via Hardy–Sobolev inequalities, Pitman Research Notes 343 (1996) 73-91.  MR 1417272 |  Zbl 0868.35012
[14] Cohen D., Laetsch T., Nonlinear boundary value problems suggested by chemical reactor theory, J. Differential Equations 7 (1970) 217-226.  MR 259356 |  Zbl 0201.43102
[15] Crandall M.G., An introduction to constructive aspects of bifurcation and the implicit function theorem, in: Rabinowitz P.H. (Ed.), Applications of Bifurcation Theory, Academic Press, New York, 1977, pp. 1-35.  MR 463988
[16] Crandall M.G., Rabinowitz P.H., Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971) 321-340.  MR 288640 |  Zbl 0219.46015
[17] Crandall M.G., Rabinowitz P.H., Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rat. Mech. Anal. 52 (1973) 161-180.  MR 341212 |  Zbl 0275.47044
[18] Crandall M.G., Rabinowitz P.H., Tartar L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977) 193-222.  MR 427826 |  Zbl 0362.35031
[19] Dautray R., Lions J.L., Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3, Springer-Verlag, Berlin, 1990.  MR 1064315 |  Zbl 0766.47001
[20] Díaz J.I., Nonlinear Partial Differential Equations and Free Boundaries, Pitman, Boston, 1985.  MR 908901 |  Zbl 0595.35100
[21] Dieudonné J., Foundations of Modern Analysis, Academic Press, New York, 1960.  MR 120319 |  Zbl 0100.04201
[22] Donsker M., Varadhan S.R.S., On the principal eigenvalue of second-order elliptic differential operators, Comm. Pure Appl. Math. 29 (1976) 595-621.  MR 425380 |  Zbl 0356.35065
[23] Faber C., Beweis das unter allen homogenen membranen von gleicher fläche und gleicher spannung die kreisförmige den tiefsten grundton gibt, Sitzunsber, Bayer. Akad. der Wiss. Math. Phys. (1923) 169-172.  JFM 49.0342.03
[24] Fulks W., Maybee J.S., A singular nonlinear equation, Osaka J. Math. 12 (1960) 1-19.  MR 123095 |  Zbl 0097.30202
[25] Gurney W.S.C., Nisbet R.N., The regulation of inhomogeneous populations, J. Theor. Biol. 52 (1975) 441-457.
[26] Gurtin M.E., MacCamy R.C., On the diffusion of biological populations, Math. Biosci. 33 (1977) 35-49.  MR 682594 |  Zbl 0362.92007
[27] Henry D., Geometric Theory of Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin, 1981.  MR 610244 |  Zbl 0456.35001
[28] J. Hernández, in preparation, 1999.
[29] Hess P., Kato T., On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations 5 (1980) 999-1030.  MR 588690 |  Zbl 0477.35075
[30] Kamynin L.I., Khimchenko B.N., Development of Aleksandrov's theory of the isotropic strict extremum principle, Differential Equations (English translation) 16 (1980) 181-189.  Zbl 0448.35020
[31] Krahn E., Über eine von Rayleigh formulierte minimaleigenschaft des kreises, Math. Ann. 91 (1925) 97-100.  MR 1512244 |  JFM 51.0356.05
[32] Ladyženskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, 1968.  MR 241822 |  Zbl 0174.15403
[33] Laetsch T., Uniqueness of sublinear boundary value problems, J. Differential Equations 13 (1973) 13-23.  MR 369899 |  Zbl 0247.35052
[34] López-Gómez J., The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations 127 (1996) 263-294.  MR 1387266 |  Zbl 0853.35078
[35] Manes A., Micheletti A.M., Un estensione della teoria variazonale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. 7 (1973) 285-301.  MR 344663 |  Zbl 0275.49042
[36] Namba T., Density-dependent dispersal and spatial distribution of a population, J. Theor. Biol. 86 (1980) 351-363.  MR 585955
[37] Pao C.V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.  MR 1212084 |  Zbl 0777.35001
[38] Protter M.H., Weinberger H.F., Maximum Principles in Differential Equations, Springer-Verlag, Berlin, 1984.  MR 762825 |  Zbl 0549.35002
[39] Pucci C., Propietà di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico, Atti. Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. 23 (1957) 370-375.  Zbl 0088.30501
[40] Rabinowitz P.H., Théorie du degré topologique et applications à des problèmes aux limites non linéaires, Lecture Notes, Lab. Analyse Numérique, Univ. Paris VI, Paris, 1975.
[41] Sattinger D.H., Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972) 979-1000.  MR 299921 |  Zbl 0223.35038
[42] Schatzman M., Stationary solutions and asymptotic behavior of a quasilinear degenerate parabolic equation, Indiana Univ. Math. J. 33 (1984) 1-29.  MR 726104 |  Zbl 0554.35064
[43] Smoller J., Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, Berlin, 1983.  MR 688146 |  Zbl 0508.35002
[44] Spruck J., Uniqueness of a diffusion model of population biology, Comm. Partial Differential Equations 8 (1983) 1605-1620.  MR 729195 |  Zbl 0534.35055
Copyright Cellule MathDoc 2014 | Crédit | Plan du site