Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Almeida, Luís; Damascelli, Lucio; Ge, Yuxin
A few symmetry results for nonlinear elliptic PDE on noncompact manifolds. Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 19 no. 3 (2002), p. 313-342
Texte intégral djvu | pdf | Analyses MR 1956953 | Zbl 1029.35096 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPC_2002__19_3_313_0

Bibliographie

[1] Alexandrov A., Uniqueness theorem for surfaces in the large, Vestnik Leningrad Univ. Math. 11 (1956) 5-17.  MR 86338
[2] Almeida L., Ge Y., Symmetry results for positive solutions of some elliptic equations on manifolds, Annals Global Anal. Geom. 18 (2000) 153-170.  MR 1744588 |  Zbl 0968.58015
[3] Berestycki H., Caffarelli L.A., Nirenberg L., Symmetry for elliptic equations in a half space, in: Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, pp. 27-42.  MR 1260436 |  Zbl 0793.35034
[4] Berestycki H., Caffarelli L.A., Nirenberg L., Inequalities for second order elliptic equations with applications to unbounded domains. I, Duke Math. J. 81 (1996) 467-494.
Article |  MR 1395408 |  Zbl 0860.35004
[5] Berestycki H., Caffarelli L.A., Nirenberg L., Monotonicity for elliptic equations in unbounded Lipshitz domains, Comm. Pure Appl. Math. 50 (1997) 1089-1111.  MR 1470317 |  Zbl 0906.35035
[6] Berestycki H., Caffarelli L.A., Nirenberg L., Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997) 69-94.
Numdam |  MR 1655510 |  Zbl 1079.35513
[7] Berestycki H., Nirenberg L., On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat. 22 (1991) 1-39.  MR 1159383 |  Zbl 0784.35025
[8] Damascelli L., Pacella F., Ramaswamy M., Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Ration. Mech. Anal. 148 (1999) 291-308.  MR 1716666 |  Zbl 0937.35050
[9] Damascelli L., Ramaswamy M., Symmetry of C1 solutions of p-Laplace equations in RN, Advanced Nonlinear Studies 1 (2001) 40-64.  MR 1850203 |  Zbl 0998.35016
[10] Gidas B., Ni W.M., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 209-243.
Article |  MR 544879 |  Zbl 0425.35020
[11] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in RN, Adv. Math., Suppl. Stud. 7A (1981) 369-402.  MR 634248 |  Zbl 0469.35052
[12] Hebey E., Introduction à l'analyse non linéaire sur les variétés, Fondations, Diderot Editeur, Paris, 1997.  Zbl 0918.58001
[13] Hebey E., Sobolev Spaces on Riemannian Manifolds, Lecture Notes in Mathematics, 1635, Springer-Verlag, Berlin, 1996.  MR 1481970 |  Zbl 0866.58068
[14] Li C., Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Comm. Partial Differential Equations 16 (1991) 585-615.  MR 1113099 |  Zbl 0741.35014
[15] Li Y., Ni W.M., Radial symmetry of positive solutions of nonlinear elliptic equations in RN, Comm. Partial Differential Equations 18 (1993) 1043-1054.  MR 1218528 |  Zbl 0788.35042
[16] Serrin J., A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 (1971) 304-318.  MR 333220 |  Zbl 0222.31007
[17] Serrin J., Zou H., Symmetry of ground states of quasilinear elliptic equations, Arch. Ration. Mech. Anal. 148 (1999) 265-290.  MR 1716665 |  Zbl 0940.35079
[18] Terracini S., Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions, Differential Integral Equations 8 (1995) 1911-1922.  MR 1348957 |  Zbl 0835.35055
[19] Terracini S., On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations 1 (1996) 241-264.  MR 1364003 |  Zbl 0847.35045
Copyright Cellule MathDoc 2014 | Crédit | Plan du site