Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article suivant
Grossi, Massimo
On the number of single-peak solutions of the nonlinear Schrödinger equation. Annales de l'I.H.P. Analyse non linéaire, 19 no. 3 (2002), p. 261-280
Texte intégral djvu | pdf | Analyses MR 1956951 | Zbl 1034.35127

URL stable: http://www.numdam.org/item?id=AIHPC_2002__19_3_261_0

Bibliographie

[1] Ambrosetti A., Badiale M., Cingolani S., Semiclassical states of nonlinear Schrödinger equations, Arch. Rat. Mech. Anal. 140 (1997) 285-300.  MR 1486895 |  Zbl 0896.35042
[2] Cao D., Noussair E., Yan S., Existence and uniqueness results on single peaked solutions of a semilinear problem, Ann. Inst. H. Poincaré 15 (1998) 73-111.
Numdam |  MR 1614607 |  Zbl 0905.35033
[3] Dancer E.N., On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math. 25 (1995) 957-975.  MR 1357103 |  Zbl 0846.35046
[4] Del Pino M., Felmer P.L., Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. PDE 149 (1997) 245-265.  MR 1471107 |  Zbl 0887.35058
[5] Del Pino M., Felmer P.L., Semiclassical states of nonlinear Schrödinger equations, J. Funct. Anal. 149 (1997) 245-265.  MR 1471107 |  Zbl 0887.35058
[6] Ding W.Y., Ni W.M., On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rat. Mech. Anal. 91 (1986) 283-308.  MR 807816 |  Zbl 0616.35029
[7] Floer A., Weinstein A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (1986) 397-408.  MR 867665 |  Zbl 0613.35076
[8] Grossi M., Some results for a class of nonlinear Schrödinger equations, Math. Z. 235 (2000) 687-705.  MR 1801580 |  Zbl 0970.35039
[9] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in RN, in: Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Studies, 7A, Academic Press, New York, 1981.  MR 634248 |  Zbl 0469.35052
[10] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1977.  MR 473443 |  Zbl 1042.35002
[11] Kwong M.K., Uniqueness of positive solutions of Δuu+up=0 in Rn, Arch. Rat. Mech. Anal. 105 (1989) 243-266.  Zbl 0676.35032
[12] Li Y.Y., On a singularly perturbed elliptic equation, Adv. Diff. Eqns. 2 (1997) 955-980.  Zbl 1023.35500
[13] Lloyd, Degree Theory, Cambridge University Press.  Zbl 0367.47001
[14] Ni W.M., Takagi I., On the shape of least energy solutions to a semilinear Neumann problem, Comm. Pure Math. Appl. 41 (1991) 819-851.  MR 1115095 |  Zbl 0754.35042
[15] Ni W.M., Wei J., On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Math. Appl. 48 (1995) 731-768.  MR 1342381 |  Zbl 0838.35009
[16] Oh Y.G., Existence of semiclassical bound states of nonlinear Schrödinger equation with potential in the class (V)α, Comm. Part. Diff. Eq. 13 (1988) 1499-1519.  Zbl 0702.35228
[17] Rabinowitz P., On a class of nonlinear Schrödinger equation, Z. Angew. Math. Phys. 43 (1992) 270-291.  MR 1162728 |  Zbl 0763.35087
[18] Wang X., On a concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (1993) 223-243.
Article |  MR 1218300 |  Zbl 0795.35118
Copyright Cellule MathDoc 2014 | Crédit | Plan du site