Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Bonnet, A.
On the regularity of edges in image segmentation. Annales de l'I.H.P. Analyse non linéaire, 13 no. 4 (1996), p. 485-528
Texte intégral djvu | pdf | Analyses MR 1404319 | Zbl 0883.49004 | 6 citations dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPC_1996__13_4_485_0

Bibliographie

[1] H.W. Alt, L.A. Caffarelli and A. Friedman, Variational problems with two Phases and their free boundary, Trans. Am. Math. Soc., Vol. 282, 1984, pp. 431-461.  MR 732100 |  Zbl 0844.35137
[2] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rat. Mech. Anal., Vol. 111, 1990, pp. 291-322.  MR 1068374 |  Zbl 0711.49064
[3] L. Ambrosio and D. Pallara, Partial regularity of free discontinuity sets I, to appear.
Numdam |  MR 1475771 |  Zbl 0896.49023
[4] L. Ambrosio, N. Fusco and D. Pallara, Partial regularity of free discontinuity sets II, to appear.
Numdam |  MR 1475772 |  Zbl 0896.49024
[5] G. Congedo and I. Tamanini, On the existence of solutions to a problem in multidimensional segmentation, Ann. Inst. Henri Poincaré, Vol. 8, 2, 1991, pp. 175-195.
Numdam |  MR 1096603 |  Zbl 0729.49003
[6] G. Dal Maso, J.-M. Morel and S. Solimini, A variational method in image segmentation: existence and approximation results, Acta Matematica, Vol. 168, 1992, pp. 89-151.  MR 1149865 |  Zbl 0772.49006
[7] G. David and S. Semmes, On the singular sets of minimisers of the Mumford-Shah functional, to appear in J. Math. Pures Appl.  MR 1251061 |  Zbl 0853.49010
[8] G. David, C1-arcs for minimisers of the Mumford-Shah functional, to appear.  MR 1389754 |  Zbl 0870.49020
[9] F. Dibos, Uniform rectifiability of image segmentations obtained by a variational method, J. Math. Pures and Appl., Vol. 73, 1994, pp. 389-412.  MR 1290493 |  Zbl 0860.49030
[10] F. Dibos and G. Koepfler, Color segmentation using a variational formulation, preprint CEREMADE.
[11] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set, Arch. Rat. Mech. Anal., Vol. 108, 1989, pp. 195-218.  MR 1012174 |  Zbl 0682.49002
[12] L. Evans and R. Gariepy, Measure theory and fine properties of functions, London: CRC Press, 1992.  MR 1158660 |  Zbl 0804.28001
[13] K.J. Falconer, The geometry of fractal sets, Cambridge University Press, 1985.  MR 867284 |  Zbl 0587.28004
[14] H. Federer, Geometric measure theory, Springer-Verlag, 1969.  MR 257325 |  Zbl 0176.00801
[15] G. Hardy, J.E. Littlewood and G. Pólya, Inequalities Second Edition, Cambridge university Press.  MR 944909 |  Zbl 0010.10703 |  JFM 60.0169.01
[16] U. Massari and I. Tamanini, Regularity properties of optimal segmentations, Journ. reine angew. Math., Vol. 420, 1991, pp. 61-84.
Article |  MR 1124566 |  Zbl 0729.49004
[17] J.-M. Morel and S. Solimini, Variational methods in Image Segmentation, Birkhauser, 1994.  MR 1321598 |  Zbl 0827.68111
[18] C.B. Morrey Jr., Multiple integrals in the calculus of variations, Springer-Verlag, 1966.  MR 202511 |  Zbl 0142.38701
[19] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. on Pure and Appl. Math., Vol. XLII, n° 4, 1989.  MR 997568 |  Zbl 0691.49036
Copyright Cellule MathDoc 2014 | Crédit | Plan du site