Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent
Séré, Éric
Looking for the Bernoulli shift. Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 10 no. 5 (1993), p. 561-590
Texte intégral djvu | pdf | Analyses MR 1249107 | Zbl 0803.58013 | 12 citations dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPC_1993__10_5_561_0

Bibliographie

[B] U. Bessi, A Variational Proof of a Sitnikov-Like Theorem, preprint, Scuola Normale Superiore.  MR 1220837
[C-L] K.C. Chang and J.Q. Liu, A Remark on the Homoclinic Orbits for Hamiltonian Systems, research report of Peking University.
[CZ-E-S] V. Coti-Zelati, I. Ekeland and E. Séré, A Variational Approach to Homoclinic Orbits in Hamiltonian Systems, Mathematische Annalen, Vol. 288, 1990, pp. 133-160.  MR 1070929 |  Zbl 0731.34050
[CZ-R]1 V. Coti-Zelati and P. Rabinowitz, Homoclinic Orbits for Second Order Hamiltonian Systems Possessing Superquadratic Potentials, preprint, Sissa.  MR 1119200
[CZ-R]2 V. Coti-Zelati and P. Rabinowitz, Homoclinic Type Solutions for a Semilinear Elliptic PDE on Rn, preprint, Sissa.
[E] I. Ekeland, Convexity Methods in Hamiltonian Systems, Springer Verlag, 1989.  Zbl 0707.70003
[H-W] H. Hofer and K. Wysocki, First Order Elliptic Systems and the Existence of Homoclinic Orbits in Hamiltonian Systems, Math. Annalen, Vol. 288, 1990, pp. 483-503.  MR 1079873 |  Zbl 0702.34039
[LI]1 Y.Y. Li, On - Δu = k (x) u5 in R3, preprint, Rutgers University.
[LI]2 Y.Y. Li, On Prescribing Scalar Curvature Problem on S3 and S4, preprint, Rutgers University.  MR 1149639
[LS] P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations, Revista Iberoamericana, Vol. 1, 1985, pp. 145-201.  MR 834360 |  Zbl 0704.49005
[M] J. Moser, Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, 1973.  MR 442980 |  Zbl 0271.70009
[O] Séminaire d'Orsay, Travaux de Thurston sur les surfaces, Astérisque, Vol. 66-67, Société Mathématique de France.  Zbl 0731.57001
[S] E. Séré, Existence of Infinitely Many Homoclinic Orbits in Hamiltonian Systems, Math. Zeitschrift, Vol. 209, 1992, p. 27-42.
Article |  MR 1143210 |  Zbl 0725.58017
[T] K. Tanaka, Homoclinic Orbits in a First Order Superquadratic Hamiltonian System: Convergence of Subharmonics, preprint, Nagoya University.
[W] S. Wiggins, Global Bifurcations and Chaos, Applied Mathematical Sciences, Vol. 73, Springer-Verlag.  MR 956468 |  Zbl 0661.58001
Copyright Cellule MathDoc 2014 | Crédit | Plan du site