Recherche et téléchargement d’archives de revues mathématiques numérisées

  Table des matières de ce fascicule | Article précédent | Article suivant
Alikakos, Nicholas D.; Bates, Peter W.
On the singular limit in a phase field model of phase transitions. Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 5 no. 2 (1988), p. 141-178
Texte intégral djvu | pdf | Analyses MR 954469 | Zbl 0696.35060 | 1 citation dans Numdam

URL stable:


[Am] H. Amann, Dual Semigroups and Second Order Linear Elliptic Boundary Value Problems, Israel J. Math., Vol. 45, 1983, pp. 225-254.  MR 719122 |  Zbl 0535.35017
[AS] N.D. Alikakos and K.C. Shaing, On the Singular Limit for a Class of Problems Modelling Phase Transitions, S.I.A.M. J. Math. Analysis, Vol. 18, No 5, Sept. 1987, pp. 1453-1462.  MR 902344 |  Zbl 0649.34055
[ASi] N.D. Alikakos and H. Simpson, A Variational Approach for a Class of Singular Perturbation Problems and Applications, Proc. Royal Soc. Edinburgh, 107 A, 1987, pp. 27-42.  MR 918891 |  Zbl 0651.49011
[C] G. Caginalp, An Analysis of a Phase Field Model of a Free Boundary, Archive for Rational Mechanics and Analysis, Arch. Rat. Mech. Anal., 92, 1986, pp. 205-245.  MR 816623 |  Zbl 0608.35080
[CF] G. Caginalp and P. Fife, Elliptic Problems Involving Phase Boundaries Satisfying a Curvature Condition, preprint.  MR 983727
[CM] G. Caginalp and J.B. Mcleod, The Interior Transition Layer for an Ordinary Differential Equation Arising from Solidification Theory, Quarterly of Applied Math (to appear).  Zbl 0605.34022
[FH] G. Fusco and J. Hale, Stable Equilibria in a Scalar Parabolic Equation with Variable Diffusion, S.I.A.M. J. Math. Anal., Vol. 16, 1985, pp. 1152-1164.  MR 807902 |  Zbl 0597.35040
[MN] J.J. Mahony and J. Norbury, Asymptotic Location of Nodal lines Using Geodesic Theory, J. Australian Math. Soc., Vol. A, January 1986.  Zbl 0597.35047
[M1] L., Modica, Gradient Theory of Phase Transitions and Minimal Interface Criterion, Arch. Rat. Mech. Anal., 98, 1987, pp. 123-142.  MR 866718 |  Zbl 0616.76004
[M2] L. Modica, Gradient Theory of Phase Transitions with Boundary Contact Energy (to appear).
Numdam |  Zbl 0642.49009
[MM] L. Modica and S. Mortola, The Γ-Convergence of Some Functionals, Istituto Matematico "Leonida Tonelli", Univ. Pisa Preprint 77-7, 1977.  MR 473971
[N] I.P. Natanson, Theory of Functions of a Real Vairable, F. Ungar Publishing Co., New York, 1955.  MR 67952 |  Zbl 0064.29102
[S] P. Sternberg, The Effect of a Singular Perturbation on Nonconvex Variational Problems, Ph. D. dissertation, N.Y.U., June 1986.
Copyright Cellule MathDoc 2014 | Crédit | Plan du site