Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Gantert, Nina; König, Wolfgang; Shi, Zhan
Annealed deviations of random walk in random scenery. Annales de l'institut Henri Poincaré (B) Probabilités et Statistiques, 43 no. 1 (2007), p. 47-76
Texte intégral djvu | pdf | Analyses MR 2288269 | Zbl 1119.60083

URL stable: http://www.numdam.org/item?id=AIHPB_2007__43_1_47_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] A. Asselah, F. Castell, Large deviations for Brownian motion in a random scenery, Probab. Theory Related Fields 126 (2003) 497-527.  MR 2001196 |  Zbl 1043.60018
[2] A. Asselah, F. Castell, A note on random walk in random scenery, preprint, 2005.
arXiv
[3] A. Asselah, F. Castell, Self-intersection times for random walk, and random walk in random scenery in dimension $d\ge 5$, preprint, 2005.
[4] G. Ben Arous, R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale. II, Probab. Theory Related Fields 90 (3) (1991) 377-402.  MR 1133372 |  Zbl 0734.60027
[5] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.  MR 898871 |  Zbl 0617.26001
[6] E. Bolthausen, A central limit theorem for two-dimensional random walks in random sceneries, Ann. Probab. 17 (1989) 108-115.
Article |  MR 972774 |  Zbl 0679.60028
[7] A.N. Borodin, Limit theorems for sums of independent random variables defined on a transient random walk, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979) 17-29, 237, 244.  MR 535455 |  Zbl 0417.60027
[8] A.N. Borodin, A limit theorem for sums of independent random variables defined on a recurrent random walk, Dokl. Akad. Nauk SSSR 246 (4) (1979) 786-787.  MR 543530 |  Zbl 0423.60025
[9] D.C. Brydges, G. Slade, The diffusive phase of a model of self-interacting walks, Probab. Theory Related Fields 103 (1995) 285-315.  MR 1358079 |  Zbl 0832.60096
[10] F. Castell, Moderate deviations for diffusions in a random Gaussian shear flow drift, Ann. Inst. H. Poincaré Probab. Statist. 40 (3) (2004) 337-366.
Numdam |  MR 2060457 |  Zbl 1042.60009
[11] F. Castell, F. Pradeilles, Annealed large deviations for diffusions in a random shear flow drift, Stochastic Process Appl. 94 (2001) 171-197.  MR 1840830 |  Zbl 1051.60028
[12] X. Chen, Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks, Ann. Probab. 32 (4) (2004).
Article |  MR 2094445 |  Zbl 1067.60071
[13] X. Chen, W. Li, Large and moderate deviations for intersection local times, Probab. Theory Related Fields 128 (2004) 213-254.  MR 2031226 |  Zbl 1038.60074
[14] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, second ed., Springer, Berlin, 1998.  MR 1619036 |  Zbl 0896.60013
[15] M. Donsker, S.R.S. Varadhan, On the number of distinct sites visited by a random walk, Comm. Pure Appl. Math. 32 (1979) 721-747.  MR 539157 |  Zbl 0418.60074
[16] N. Gantert, R. van der Hofstad, W. König, Deviations of a random walk in a random scenery with stretched exponential tails, Stochastic Process. Appl. 116 (3) (2006) 480-492.  MR 2199560 |  Zbl 1100.60056
[17] J. Gärtner, On large deviations from the invariant measure, Theory Probab. Appl. 22 (1) (1977) 24-39.  MR 471040 |  Zbl 0375.60033
[18] J.-P. Kahane, Some Random Series of Functions, second ed., Cambridge University Press, Cambridge, 1985.  MR 833073 |  Zbl 0571.60002
[19] H. Kesten, F. Spitzer, A limit theorem related to a new class of self-similar processes, Z. Wahrsch. Verw. Geb. 50 (1979) 5-25.  MR 550121 |  Zbl 0396.60037
[20] W. König, P. Mörters, Brownian intersection local times: upper tail asymptotics and thick points, Ann. Probab. 30 (2002) 1605-1656.
Article |  MR 1944002 |  Zbl 1032.60073
[21] E.H. Lieb, M. Loss, Analysis, Grad. Stud. Math., vol. 14, second ed., Amer. Math. Soc., Providence, RI, 2001.  MR 1817225 |  Zbl 0966.26002
[22] M. McLeod, J. Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Natl. Acad. Sci. USA 78 (11) (1981) 6592-6595.  MR 634934 |  Zbl 0474.35047
[23] V.V. Petrov, Sums of Independent Random Variables, Springer, Berlin, 1975.  MR 388499 |  Zbl 0322.60042
[24] F. Spitzer, Principles of Random Walk, second ed., Springer, Berlin, 1976.  MR 388547 |  Zbl 0359.60003
[25] K. Uchiyama, Green's functions for random walks on ${Z}^{N}$, Proc. London Math. Soc. 77 (3) (1998) 215-240.  MR 1625467 |  Zbl 0893.60045
[26] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983) 567-576.
Article |  MR 691044 |  Zbl 0527.35023
Copyright Cellule MathDoc 2014 | Crédit | Plan du site