Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article suivant
Pratelli, Aldo
On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation. Annales de l'I.H.P. Probabilités et statistiques, 43 no. 1 (2007), p. 1-13
Texte intégral djvu | pdf | Analyses MR 2288266 | Zbl 1121.49036

URL stable: http://www.numdam.org/item?id=AIHPB_2007__43_1_1_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] L. Ambrosio, Lecture notes on optimal transport problems, in: Mathematical Aspects of Evolving Interfaces, Lecture Notes in Math., vol. 1812, Springer, 2003, pp. 1-52.  MR 2011032 |  Zbl 1047.35001
[2] L. Ambrosio, A. Pratelli, Existence and stability results in the ${L}^{1}$ theory of optimal transportation, in: Optimal Transportation and Applications, Lecture Notes in Math., vol. 1813, Springer, 2003, pp. 123-160.  MR 2006307 |  Zbl 1065.49026
[3] L. Caffarelli, M. Feldman, R.J. McCann, Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs, J. Amer. Math. Soc. 15 (2002) 1-26.  MR 1862796 |  Zbl 1053.49032
[4] L.C. Evans, W. Gangbo, Differential equations methods for the Monge–Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137 (653) (1999).  Zbl 0920.49004
[5] W. Gangbo, The Monge mass transfer problem and its applications, Contemp. Math. 226 (1999) 79-104.  MR 1660743 |  Zbl 0930.49025
[6] L.V. Kantorovich, On the transfer of masses, Dokl. Akad. Nauk SSSR 37 (1942) 227-229.
[7] L.V. Kantorovich, On a problem of Monge, Uspekhi Mat. Nauk 3 (1948) 225-226.
[8] G. Monge, Memoire sur la Theorie des Déblais et des Remblais, Hist. de l'Acad. des Sciences de Paris, 1781.
[9] J.C. Oxtoby, Homeomorphic measures in metric spaces, Proc. Amer. Math. Soc. 24 (1970) 419-423.  MR 260961 |  Zbl 0187.00902
[10] A. Pratelli, Existence of optimal transport maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy, 2003. Available on, http://cvgmt.sns.it/.
[11] S.T. Rachev, L. Rüschendorf, Mass Transportation Problems, Springer-Verlag, 1998.
[12] H.L. Royden, Real Analysis, second ed., Macmillan, 1968.  Zbl 0197.03501
[13] N.S. Trudinger, X.J. Wang, On the Monge mass transfer problem, Calc. Var. Partial Differential Equations 13 (2001) 19-31.  MR 1854255 |  Zbl 1010.49030
Copyright Cellule MathDoc 2014 | Crédit | Plan du site