Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Hagedorn, George A.; Joye, Alain
Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation. Annales de l'institut Henri Poincaré (A) Physique théorique, 68 no. 1 (1998), p. 85-134
Texte intégral djvu | pdf | Analyses MR 1618922 | Zbl 0915.35090 | 5 citations dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPA_1998__68_1_85_0

Bibliographie

[1] J.D. Cole. Perturbation Methods in Applied Mathematics Waltham, Mass., Toronto, London: Blaisdell 1968.  MR 246537 |  Zbl 0162.12602
[2] J.-M. Combes, On the Born-Oppenheimer Approximation. In: International Symposium on Mathematical Problems in Theoretical Physics. ed. by H. Araki. Berlin, Heidelberg, New York: Springer 1975.  MR 673617
[3] J.-M. Combes, The Born-Oppenheimer Approximation. In: The Schrödinger Equation. ed. by W. Thirring, P. Urban. Wien, New York: Springer 1977.  MR 673617 |  Zbl 0372.47026
[4] J.-M. Combes, P. Duclos and R. Seiler, The Born-Oppenheimer Approximation. In Rigorous Atomic and Molecular Physics. ed. by G. Velo, A. Wightman. New York: Plenum 1981.
[5] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products. New York: Academic Press 1980.
[6] G.A. Hagedorn, A Time-Dependent Born-Oppenheimer Approximation. Commun. Math. Phys., Vol. 77, 1980, pp. 1-19.
Article |  MR 588684 |  Zbl 0448.70013
[7] G.A. Hagedorn, Semiclassical Quantum Mechanics IV: Large Order Asymptotics and More General States in More than One Dimension. Ann. Inst. H. Poincaré Sect. A, Vol. 42, 1985, pp. 363-374.
Numdam |  MR 801234 |  Zbl 0900.81053
[8] G.A. Hagedorn, High Order Corrections to the Time-Dependent Born-Oppenheimer Approximation I: Smooth Potentials. Ann. Math., Vol. 124, 1986, pp. 571-590, Erratum, Vol. 126, 1987, p. 219.  MR 866709 |  Zbl 0619.35094
[9] G.A. Hagedorn, High Order Corrections to the Time-Independent Born-Oppenheimer Approximation I: Smooth Potentials. Ann. Inst. H. Poincaré Sect. A, Vol. 47, 1987, pp. 1-19.
Numdam |  MR 912753 |  Zbl 0621.41012
[10] G.A. Hagedorn, High Order Corrections to the Time-Independent Born-Oppenheimer Approximation II: Diatomic Coulomb Systems. Commun. Math. Phys., Vol. 116, 1988, pp. 23-44.
Article |  MR 937358
[11] G.A. Hagedorn, High Order Corrections to the Time-Dependent Born-Oppenheimer Approximation II: Coulomb Systems. Commun. Math. Phys., Vol. 117, 1988, pp. 387-403.
Article |  MR 953829
[12] G.A. Hagedorn, Multiple Scales and the Time-Independent Born-Oppenheimer Approximation. In: Differential Equations and Applications. ed. by R. Aftabizadeh. New York: Marcel Dekker 1989.  MR 1026169 |  Zbl 0751.47033
[13] G.A. Hagedorn, Electron Energy Level Crossings in the Time-Dependent Bom–Oppenheimer Approximation. Theor. Chimica Acta., Vol. 77, 1990, pp. 163-190.
[14] G.A. Hagedorn, Proof of the Landau-Zener Formula in an Adiabatic Limit with Small Eigenvalue Gaps. Commun. Math. Phys., Vol. 136, 1991, pp. 433-449.
Article |  MR 1099690 |  Zbl 0723.35068
[15] G.A. Hagedorn, Time-Reversal Invariance and the Time-Dependent Born-Oppenheimer Approximation. In Forty More Years of Ramifications: Spectral Asymptotics and Its Applications, (Discourses in Mathematics and Its Applications, No. 1). ed. by S. A. Fulling and F. J. Narcowich. College Station: Texas A & M University Mathematics Department 1992.  Zbl 0796.47053
[16] G.A. Hagedorn, Molecular Propagation Through Electron Energy Level Crossings, Memoirs Amer. Math. Soc., Vol. 536, 1994.  MR 1234882 |  Zbl 0833.92025
[17] G.A. Hagedorn, Effects of Electron Energy Level Crossings on Molecular Propagation. Differential Equations and Mathematical Physics. Proceedings of the International Conference. Univ. of Alabama at Birmingham, March 13-17, 1994. ed by I. Knowles. 1995, pp. 85-95.  MR 1703574 |  Zbl 0929.35125
[18] G.A. Hagedorn, Classification and Normal Forms for Avoided Crossings of Quantum Mechanical Energy Levels. 1995 Preprint, Virginia Polytechnic Institute and State University.  MR 1620277
[19] G.A. Hagedorn and A. Joye, Molecular Propagation through Small Avoided Crossings of Electron Energy Levels. 1996 Preprint, Virginia Polytechnic Institute and State University.  MR 1668071
[20] J.S. Herrin, The Born-Oppenheimer Approximation: Straight-Up and with a Twist. Ph. D. Dissertation, University of Virginia, 1990.
[21] A. Joye, Non-trivial Prefactors in Adiabatic Transition Probabilities Induced by High Order Complex Degeneracies. J. Phys. A, Vol. 26, 1993, pp. 6517-6540.  MR 1253052
[22] A. Joye, Proof of the Landau-Zener Formula. Asymptotic Analysis, Vol. 9, 1994, pp. 209-258.  MR 1295294 |  Zbl 0814.35109
[23] A. Joye, Exponential Asymptotics in a Singular Limit for n-Level Scattering Systems. Preprint CNRS Marseille CPT-95/P.3216, SIAM J. Math. Anal. (to appear).  MR 1443614
[24] A. Joye, H. Kunz and C.-E. Pfister, Exponential Decay and Geometric Aspect of Transition Probabilities in the Adiabatic Limit. Ann. Phys., Vol. 208, 1991, pp. 299-332.  MR 1110431 |  Zbl 0875.60022
[25] A. Joye, G. Mileti and C-E. Paster, Interferences in Adiabatic Transition Probabilities Mediated by Stokes Lines. Phys. Rev. A, Vol. 44, 1991, pp. 4280-4295.
[26] A. Joye and C-E.. Pfister, Full Asymptotic Expansion of Transition Probabilities in the Adiabatic Limit. J. Phys. A., Vol. 24, 1991, pp. 753-766.  MR 1104171 |  Zbl 0722.60086
[27] A. Joye and C-E.. Pfister, Absence of Geometrical Correction to the Landau-Zener Formula. Phvs. Lett. A, Vol. 169, 1992, pp. 62-66.
[28] A. Joye and C-E.. Pfister, Superadiabatic Evolution and Adiabatic Transition Probability between Two Non-Degenerate Levels Isolated in the Spectrum. J. Math. Phys., Vol. 34, 1993, pp. 454-479.  MR 1201014 |  Zbl 0776.35056
[29] A. Joye, and C-E.. Pfister, Non-abelian Geometric Effect in Quantum Adiabatic Transitions. Phys. Rev. A, Vol. 48, 1993, pp. 2598-2608.  MR 1240911
[30] A. Joye and C-E.. Pfister, Quantum Adiabatic Evolution, in Leuven Conference Proceedings; On the Three Levels Micro–Meso– and Macro-Approaches in Physics, M. Fannes, C. Meas, A. Verbeure eds., Plenum, New York, 1994, pp. 139-148.  Zbl 0884.47053
[31 ] A. Joye and C-E.. Pfister, Semi-Classical Asymptotics beyond All Orders for Simple Scattering Systems, SIAM J. Math. Anal., Vol. 26, 1995, pp. 944-977.  MR 1338369 |  Zbl 0830.34047
[32] A. Kargol, The Infinite Time Limit for the Time-Dependent Born-Oppenheimer Approximation. Commun. Math. Phys., Vol. 166, 1994, pp. 129-148.
Article |  MR 1309544 |  Zbl 0821.47051
[33] T. Kato, On the Adiabatic Theorem in Quantum Mechanics. J. Phys. Soc. Jpn., Vol. 5, 1950, pp. 435-439.
[34] M. Klein, On the Mathematical Theory of Predissociation. Ann. Phys., Vol. 178, 1987, pp. 48-73.  MR 913151 |  Zbl 0649.35024
[35] M. Klein, A. Martinez, R. Seiler and X.P. Wang, On the Born-Oppenheimer Expansion for Polyatomic Molecules. Commun. Math. Phys., Vol. 143, 1992, pp. 607-639.
Article |  MR 1145603 |  Zbl 0754.35099
[36] M. Klein, A. Martinez and X.P. Wang, On the Born-Oppenheimer Approximation of Wave Operators in Molecular Scattering Theory. Université de Nantes preprint, 1992.
[37] Ph.A. Martin and G. Nenciu, Semi-Classical Inelastic S-Matrix for One-Dimensional N-States Systems, Rev. Math. Phys., Vol. 7, 1995, pp. 193-242.  MR 1317340 |  Zbl 0835.34098
[38] A. Martinez, Développements Asymptotiques et Effet Tunnel dans l'Approximation de Born-Oppenheimer. Ann. Inst. H. Poincaré Sect. A, Vol. 50, 1989, pp. 239-257.
Numdam |  MR 1017965 |  Zbl 0689.35063
[39] A. Martinez, Développements Asymptotiques dans l'Approximation de Bom–Oppenheimer. Journées E. D. P. de St. Jean-de-Monts (1988).
Numdam |  Zbl 0699.35209
[40] A. Martinez, Resonances dans l'Approximation de Born-Oppenheimer I. J. Diff. Eq., Vol. 91. 1991, pp. 204-234.  MR 1111174 |  Zbl 0737.35046
[41 ] A. Martinez, Resonances dans l'Approximation de Born-Oppenheimer II. Largeur de Résonances. Commun. Math. Phys., Vol. 135, 1991, pp. 517-530.
Article |  MR 1091576 |  Zbl 0737.35047
[42] P. Pettersson, WKB Expansions for Systems of Schrödinger Operators with Crossing Eigenvalues. University of Lund PhD Thesis, 1993.
Copyright Cellule MathDoc 2014 | Crédit | Plan du site