Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article suivant
Moszyński, Marcin
On classical intrinsically resonant formal perturbation theory. Annales de l'I.H.P. Physique théorique, 63 no. 2 (1995), p. 125-154
Texte intégral djvu | pdf | Analyses MR 1357493 | Zbl 0832.70016

URL stable: http://www.numdam.org/item?id=AIHPA_1995__63_2_125_0

Bibliographie

[1] W.I. Arnold, Mathematical Methods of Classical Mechanics, Moscow, Nauka, 1974 (in Russian).  MR 474390
[2] G. Benerfin, L. Galgani, A. Giorgilli and J.-M. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method, Il Nuovo Cimento, Vol. 79 B, No. 2, 1984, pp. 201-223.  MR 743977
[3] G. Benettin and G. Gallavotti, Stability of motion near resonances in quasi integrable hamiltonian systems, Journal of Statistical Physics, Vol. 44, 1986, pp. 293-338.  MR 857061 |  Zbl 0636.70018
[4] M. Degli Esposti, S. Graffi and J. Herczyński, Quantization of the classical Lie algorithm in the Bargman representation, Annals of Physics, Vol. 209, 1991, pp. 364-392.  MR 1117300 |  Zbl 0875.47008
[5] F. Fassó, Lie series method for vector fields and hamiltonian perturbation theory, Journal of Applied Mathematics and Physics (ZAMP), Vol. 41, 1990, pp. 843-864.  MR 1082741 |  Zbl 0746.70012
[6] J. Ford and G.H. Lunsford, Stochastic behaviour of resonant nearly linear oscillator systems in the limit of zero nonlinear coupling, Physical Review, Vol. 1 A, 1970, pp. 59-70.
[7] G. Galavotti, The Elements of Mechanics, New York, Springer, 1983.  MR 698947 |  Zbl 0512.70001
[8] A. Giorgilli and L. Galgani, Rigorous estimates for the series expansions of hamiltonian perturbation theory, Celestial Mechanics, Vol. 37, 1985, pp. 95-112.  MR 838181
[9] J. Herczyński, A note on uniqueness of the normal form for quasi-integrable systems, Meccanica, Vol. 27, 1992, pp. 281-284.  Zbl 0768.58043
[10] E.F. Jager and A.L. Lichtenberg, Resonant modification and destruction of adiabatic invariants, Annals of Physics, Vol. 71, 1972, pp. 319-356.
[11] P.V. Koseleff, Calcul formel pour les méthodes de Lie en mécanique hamiltonienne, Thèse, École Polytechnique, Paris, 1993.
[12] A.J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion, Berlin, Springer, 1983.  MR 681862 |  Zbl 0506.70016
[13] P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Mathematical Surveys, Vol. 47:6, 1992, pp. 57-133.  MR 1209145 |  Zbl 0795.58042
[14] P. Lochak, Stability of hamiltonian systems over exponentially long times. The nearlinear case, Proceedings of the Cincinnati 1992 Conference on Hamiltonian Dynamical Systems, IMA Publ.  Zbl 0836.58025
[15] B. McNamara and R.I. Whiteman, Invariants of nearly periodic hamiltonian systems, Culham Laboratory Report, CLM P111, 1966, Culham England.
[16] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Vol. 1, Paris, Gauthier-Villars, 1897.  JFM 24.1130.01
[17] J. Pöschel, Nekhoroshev estimates for quasiconvex hamiltonian systems, Mathematishe Zeitschrift, Vol. 213, 1993, pp. 187-216.
Article |  MR 1221713 |  Zbl 0857.70009
[18] H. Scott Dumas, A Nekhoroshev-like theory of classical particle channeling in perfect crystals, Dynamics Reported, Expositions in Dynamical Systems, New Series, Vol. 2, 1993, pp. 69-115.  MR 1347925 |  Zbl 0795.70010
Copyright Cellule MathDoc 2014 | Crédit | Plan du site