Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article suivant
Tilgner, Hans
A class of solvable Lie groups and their relation to the canonical formalism. Annales de l'I.H.P. Physique théorique, 13 no. 2 (1970), p. 103-127
Texte intégral djvu | pdf | Analyses MR 277192 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPA_1970__13_2_103_0

Bibliographie

[1] H.D. Döbner et O. Melsheimer, Limitable Dynamical Groups in Quantum Mechanics. I. General Theory and a Spinless Model. J. Math. Phys., t. 9, 1968, p. 1638- 1656.  MR 237145 |  Zbl 0162.58702
H.D. Döbner et T. Palev, To appear.
[2] D. Kastler, C*-Algebras of a Free Boson Field. Commun. Math. Phys., t. 1, 1965, p. 14-48.
Article |  MR 193983 |  Zbl 0137.45601
[3] M. Köcher, Jordan Algebras and their Applications. University of Minnesota, Minneapolis, 1962.  Zbl 0128.03101
[4] S. Helgason, Differential Geometry and Symmetric Spaces. Academic Press, N. Y., 1962.  MR 145455 |  Zbl 0111.18101
[5] O. Loos, Symmetric Spaces. I. Benjamin, N. Y., 1969.  Zbl 0175.48601
[6] J. Williamson, The Exponential Representation of Canonical Matrices. Am. J. Math., t. 61, 1939, p. 897-911.  MR 220 |  Zbl 0022.10007
[7] L. Michel, Invariance in Quantum Mechanics and Group Extensions in Gürsey (ed.) : Group Theoretical Concepts and Methods in Elementary Particle Physics. Gordon and Breach, N. Y., 1964.  MR 171551 |  Zbl 0151.34305
[8] R.F. Streater, The Representations of the Oscillator Group. Commun. Math. Phys., t. 4, 1967, p. 217-236.
Article |  MR 207908 |  Zbl 0155.32503
[9] N. Jacobson, Lie Algebras. Interscience, N. Y., 1961.  MR 143793 |  Zbl 0121.27504
[10] D. Simms, Lie Groups in Quantum Mechanics. Springer, Lecture, Notes in Mathematics, 52, Berlin, 1968.  Zbl 0161.24002
[11] Séminaire Sophus Lie, E. N. S., 1954. Théorie des Algèbres de Lie, Topologie des Groupes de Lie.
Numdam
[12] I. Segal, Quantized Differential Forms. Topology, t. 7, 1968, p. 147-172.  MR 232790 |  Zbl 0162.40602
[13] S. Lang, Algebra. Addison-Wesley, Reading, Mass., 1965.  MR 197234 |  Zbl 0193.34701
[14] Duimio et Zambotti, Dynamical Group of the Anisotropic Harmonic Oscillator. Nuovo Cimento, t. 43 A, 1966, p. 1203-1207.
[15] S.S. Sannikov, Square Root Extraction for Anticommuting Spinors. Soviet. Math. Dokl., t. 8, 1967, p. 32-34.  Zbl 0244.20051
[16] R. Hermann, Lie Groups for Physicists. Benjamin, N. Y., 1966.  MR 213463 |  Zbl 0135.06901
[17] C. Chevalley, Theory of Lie Groups. I. Princeton, 1964.
Copyright Cellule MathDoc 2014 | Crédit | Plan du site