Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Banica, Teodor; Bichon, Julien; Chenevier, Gaëtan
Graphs having no quantum symmetry. Annales de l'institut Fourier, 57 no. 3 (2007), p. 955-971
Texte intégral djvu | pdf | Analyses MR 2336835 | Zbl pre05176611
Class. Math.: 16W30, 05C25, 20B25

URL stable: http://www.numdam.org/item?id=AIF_2007__57_3_955_0

Voir cet article sur le site de l'éditeur

Résumé

On considère des graphes circulants ayant $p$ sommets, avec $p$ premier. A un tel graphe on associe un certain nombre $k$, qu’on appelle type du graphe. On montre que pour $p \gg k$ le graphe n’a pas de symétrie quantique, dans le sens où son groupe quantique d’automorphismes est réduit à son groupe classique d’automorphismes.

Bibliographie

[1] Alspach B., Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree,, J. Combinatorial Theory Ser. B 15 (1973) p. 12-17  MR 332553 |  Zbl 0271.05117
[2] Banica T., Symmetries of a generic coaction, Math. Ann. 314 (1999) p. 763-780  MR 1709109 |  Zbl 0928.46038
[3] Banica T., Quantum automorphism groups of homogeneous graphs, J. Funct. Anal. 224 (2005) p. 243-280  MR 2146039 |  Zbl 02189266
[4] Banica T., Quantum automorphism groups of small metric spaces, Pacific J. Math. 219 (2005) p. 27-51  MR 2174219 |  Zbl 05011504
[5] Banica T. & Bichon J., Free product formulae for quantum permutation groups, J. Math. Inst. Jussieu, to appear
arXiv
[6] Banica T. & Bichon J., Quantum automorphism groups of vertex-transitive graphs of order $\le $ 11, math.QA/0601758
arXiv
[7] Banica T. & Collins B., Integration over compact quantum groups, Publ. Res. Inst. Math. Sci., to appear
arXiv |  Zbl 1129.46058
[8] Biane P., Representations of symmetric groups and free probability, Adv. Math. 138 (1998) p. 126-181  MR 1644993 |  Zbl 0927.20008
[9] Bichon J., Quantum automorphism groups of finite graphs, Proc. Amer. Math. Soc. 131 (2003) p. 665-673  MR 1937403 |  Zbl 1013.16032
[10] Bichon J., Free wreath product by the quantum permutation group, Alg. Rep. Theory 7 (2004) p. 343-362  MR 2096666 |  Zbl 02128533
[11] Bisch D. & Jones V. F. R., Singly generated planar algebras of small dimension, Duke Math. J. 101 (2000) p. 41-75
Article |  MR 1733737 |  Zbl 1075.46053
[12] Collins B., Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not. 17 (2003) p. 953-982  MR 1959915 |  Zbl 1049.60091
[13] Di Francesco P., Meander determinants, Comm. Math. Phys. 191 (1998) p. 543-583  MR 1608551 |  Zbl 0923.57002
[14] Dobson E. & Morris J., On automorphism groups of circulant digraphs of square-free order, Discrete Math. 299 (2005) p. 79-98  MR 2168697 |  Zbl 1073.05034
[15] Jones V. F. R. & Sunder V. S., Introduction to subfactors, LMS Lecture Notes, 234, Cambridge University Press, 1997  MR 1473221 |  Zbl 0903.46062
[16] Klimyk A. & Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, 1997  MR 1492989 |  Zbl 0891.17010
[17] Klin M. H. & Pöschel R., The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings,, Colloq. Math. Soc. Janos Bolyai 25 (1981) p. 405-434  MR 642055 |  Zbl 0478.05046
[18] Wang S., Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998) p. 195-211  MR 1637425 |  Zbl 1013.17008
[19] Washington L. C., Introduction to cyclotomic fields, GTM, 83, Springer, 1982  MR 718674 |  Zbl 0484.12001
[20] Weingarten D., Asymptotic behavior of group integrals in the limit of infinite rank, J. Math. Phys. 19 (1978) p. 999-1001  MR 471696 |  Zbl 0388.28013
[21] Woronowicz S.L., Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987) p. 613-665
Article |  MR 901157 |  Zbl 0627.58034
Copyright Cellule MathDoc 2014 | Crédit | Plan du site