Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article suivant
Cordero-Erausquin, Dario; McCann, Robert J.; Schmuckenschläger, Michael
Prékopa–Leindler type inequalities on riemannian manifolds, Jacobi fields, and optimal transport. Annales de la faculté des sciences de Toulouse, Sér. 6, 15 no. 4 (2006), p. 613-635
Texte intégral djvu | pdf | Analyses Zbl 1125.58007

URL stable: http://www.numdam.org/item?id=AFST_2006_6_15_4_613_0

Voir cet article sur le site de l'éditeur

Résumé

Nous étudions l’extension d’inégalités de type Prékopa-Leindler au cas d’une variété riemannienne $M$ équipée d’une mesure ayant une densité $e^{-V}$ où le potentiel $V$ et la courbure de Ricci vérifient $\operatorname{Hess}_x V + \operatorname{Ric}_x \ge \lambda \, I\ (\forall x\in M)$, pour un certain $\lambda \in \mathbb{R}$. Nous ferons appel, comme dans notre travail précédent [14], au transport optimal de mesure. Mais nous exploiterons plus encore son lien avec les champs de Jacobi, ce qui permettra de ramener la discussion à l’étude du déterminant d’une matrice de champs de Jacobi. Nous présentons également d’autres applications de la méthode, en particulier aux inégalités de Sobolev logarithmiques (critère de Bakry-Emery) et à l’étude de la convexité de déplacement de la fonctionnelle entropie.

Bibliographie

[1] Alesker (S.), Dar (S.) & Milman (V.).– A remarkable measure preserving diffeomorphism between two convex bodies in $\mathbb{R}^n$,, Geom. Dedicata 74, p. 201-212 (1999)  MR 1674116 |  Zbl 0927.52007
[2] Ambrosio (L.A.), Gigli (N.) & Savaré (G.).– Gradient flows with metric and differentiable structures,and applications to the Wasserstein space, To appear in the Academy of Lincei proceedings on ``Nonlinear evolution equations’’, Rome  Zbl 1162.35349
[3] Bakry (D.) & Emery (M.).– Séminaire de Probabilités, Diffusions hypercontractives, Lecture Notes in Math 1123, Springer, 1985, p. 177-206
Numdam |  MR 889476 |  Zbl 0561.60080
[4] Ball (K.M.).– An elementary introduction to modern convex geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ., p. 1-58 (1997)  MR 1491097 |  Zbl 0901.52002
[5] Barthe (F.).– On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134, no.2, p. 335-361 (1998)  MR 1650312 |  Zbl 0901.26010
[6] Bobkov (S.) & Ledoux (M.).– From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10, p. 1028-1052 (2000)  MR 1800062 |  Zbl 0969.26019
[7] Bobkov (S.), Gentil (I.) & Ledoux (M.).– Hypercontractivity of Hamilton-Jacobi equations, J. Math. Pures Appl. 80, no.7, p. 669-696 (2001)  MR 1846020 |  Zbl 1038.35020
[8] Borell (C.).– Convex set functions in $d$-space, Period. Math. Hungar. 6, p. 111-136 (1975)  MR 404559 |  Zbl 0274.28009
[9] Brascamp (H.J.) & Lieb (E.H.).– On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation,, J. Funct. Anal. 22, p. 366-389 (1976)  MR 450480 |  Zbl 0334.26009
[10] Brenier (Y.).– Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44, p. 375-417 (1991)  MR 1100809 |  Zbl 0738.46011
[11] Carrillo (J.A.), McCann (R.J.) & Villani (C.).– Contractions in the $2$-Wasserstein length space and thermalization of granular media, to appear in Arch. Rational Mech. Anal.  MR 2209130 |  Zbl 1082.76105
[12] Chavel (I.).– Riemannian Geometry—a Modern Introduction, Cambridge Tracts in Math 108, (1993)  MR 1271141 |  Zbl 0810.53001
[13] Cordero-Erausquin (D.).– Some applications of mass transport to Gaussian type inequalities, Arch. Rational Mech. Anal. 161, no.257–269, (2002)  MR 1894593 |  Zbl 0998.60080
[14] Cordero-Erausquin (D.), McCann (R.J.) & Schmuckenschläger (M.).– A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146, p. 219-257 (2001)  MR 1865396 |  Zbl 1026.58018
[15] Cordero-Erausquin (D.), Nazaret (B.) & Villani (C.).– A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math. 182, no.2, p. 307-332 (2004)  MR 2032031 |  Zbl 1048.26010
[16] Gupta (S. Das).– Brunn-Minkowski inequality and its aftermath, J. Multivariate Anal., (1980)  MR 588074 |  Zbl 0467.26008
[17] Gallot (S.), Hulin (D.) & Lafontaine (J.).– Riemannian Geometry, Springer-Verlag, 1990  MR 1083149 |  Zbl 0716.53001
[18] Gardner (R.J.).– The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. 39, no.3, p. 355-405 (2002)  MR 1898210 |  Zbl 1019.26008
[19] Gromov (M.) & Milman (V.).– A topological application of the isoperimetric inequality, Amer. J. Math. 105, p. 843-854 (1983)  MR 708367 |  Zbl 0522.53039
[20] Knothe (H.).– Contributions to the theory of convex bodies, Michigan Math. J. 4, p. 39-52 (1957)
Article |  MR 83759 |  Zbl 0077.35803
[21] Ledoux (M.).– Concentration of measure and logarithmic Sobolev inequalities, Séminaire de Probabilités 33, p. 120-216 (1999)
Numdam |  MR 1767995 |  Zbl 0957.60016
[22] Ledoux (M.).– Measure concentration, transportation cost, and functional inequalities, Summer School on Singular Phenomena and Scaling in Mathematical Models, 2003
[23] Ledoux (M).– The concentration of measure phenomenon, American Mathematical Society, 2001  MR 1849347 |  Zbl 0995.60002
[24] Leindler (L.).– On a certain converse of Hölder’s inequality, Acta Sci. Math. 33, p. 217-233 (1972)  MR 2199372 |  Zbl 0245.26011
[25] Lott (J.) & Villani (C.).– Ricci curvature for metric-measure spaces via optimal transport, preprint
arXiv
[26] Maggi (F.) & Villani (C.).– Balls have the worst best Sobolev inequality, preprint  Zbl 02183024
[27] Maurey (B.).– Some deviation inequalities, Geom. Funct. Anal. 1, p. 188-197 (1991)
Article |  MR 1097258 |  Zbl 0756.60018
[28] Maurey (B.).– Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles, Séminaire Bourbaki, (2003)  MR 2167203 |  Zbl 02213915
[29] McCann (R.J.).– A Convexity Principle for Interacting Gases and Equilibrium Crystals, Ph. D. Thesis, Princeton University, 1994
[30] McCann (R.J.).– Existence and uniqueness of monotone measure-preserving maps, Duke. Math. J. 80, p. 309-323 (1995)
Article |  MR 1369395 |  Zbl 0873.28009
[31] McCann (R.J.).– A convexity principle for interacting gases, Adv. Math. 128, p. 153-179 (1997)  MR 1451422 |  Zbl 0901.49012
[32] McCann (R.J.).– Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal. 11, no.3, p. 589-608 (2001)  MR 1844080 |  Zbl 1011.58009
[33] Milman (V.D.) & Schechtman (G.).– Asymptotic theory of finite-dimensional normed spaces, Springer-Verlag, 1986  MR 856576
[34] Otto (F.).– The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations 26, no.1-2, p. 101-174 (2001)  MR 1842429 |  Zbl 0984.35089
[35] Otto (F.) & Villani (C.).– Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173, p. 361-400 (2000)  MR 1760620 |  Zbl 0985.58019
[36] Prékopa (A.).– Logarithmic concave measures with application to stochastic programming, Acta Sci. Math. 32, p. 301-315 (1971)  MR 315079 |  Zbl 0235.90044
[37] Prékopa (A.).– On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34, p. 335-343 (1973)  MR 404557 |  Zbl 0264.90038
[38] Schmuckenschläger (M.).– A concentration of measure phenomenon on uniformly convex bodies, GAFA Seminar (1992-1994), Birkaäuser, 1995, p. 275-287  MR 1353466 |  Zbl 0828.52004
[39] Schneider (R.).– Convex Bodies: the Brunn-Minkowski Theory, Cambridge University Press, 1993  MR 1216521 |  Zbl 0798.52001
[40] Sturm (K.-T.).– Convex functionals of probability measures and nonlinear diffusions, J. Math. Pures Appl. 84, (2005)  MR 2118836 |  Zbl 02164960
[41] Sturm (K.-T.) & von Renesse (M.-K.).– Transport inequalities, gradient estimates, entropy and Ricci curvature, Comm. Pure Appl. Math. 58, p. 923-940 (2005)  MR 2142879 |  Zbl 1078.53028
[42] Trudinger (N.S.).– Isoperimetric inequalities for quermassintegrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 11, p. 411-425 (1994)
Numdam |  MR 1287239 |  Zbl 0859.52001
[43] Villani (C.).– Graduate Studies in Math., Topics in Optimal Transportation, 58, American Mathematical Society, 2003  MR 1964483 |  Zbl 01909499
Copyright Cellule MathDoc 2014 | Crédit | Plan du site