Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Bertoin, Jean; Yor, Marc
On the entire moments of self-similar Markov processes and exponential functionals of Lévy processes. Annales de la Faculté des sciences de Toulouse : Mathématiques, Sér. 6, 11 no. 1 (2002), p. 33-45
Texte intégral djvu | pdf | Analyses MR 1986381 | Zbl 1031.60038 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=AFST_2002_6_11_1_33_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] Bertoin (J.). — Lévy Processes, Cambridge University Press, 1996.  MR 1406564 |  Zbl 0861.60003
[2] Bertoin (J.), Biane (Ph.) and Yor (M.). — Poissonian exponential functionals, q-series, q-integrals, and the moment problem for log-normal distributions, to appear in Proceedings Stochastic Analysis, Ascona, Birkhäuser, 2002.  MR 2096279 |  Zbl 1056.60046
[3] Bertoin (J.) and Caballero (M.-E.).— Entrance from 0+ for increasing semi-stable Markov processes, Bernoulli 8 (2002), 195-205.
Article |  MR 1895890 |  Zbl 1002.60032
[4] Bertoin (J.) and Yor (M.). — Entrance laws of self-similar Markov processes and exponential functionals of Lévy processes, Potential Analysis 17 (2002), 389-400.  MR 1918243 |  Zbl 1004.60046
[5] Bertoin (J.) and Yor (M.). — On subordinators, self-similar Markov processes, and some factorizations of the exponential law, Elect. Commun. Probab. 6 (2001), 95-106. Available at http://www.math.washington.edu/∼ejpecp/ecpficontents.html.  MR 1871698 |  Zbl 1024.60030
[6] Carmona (P.), Petit (F.) and Yor (M.). — Sur les fonctionnelles exponentielles de certains processus de Lévy, Stochastics and Stochastics Reports 47 (1994), 71-101.  MR 1787143 |  Zbl 0830.60072
[7] Carmona (P.), Petit (F.) and Yor (M.). — On the distribution and asymptotic results for exponential functionals of Lévy process, in: M.Yor (editor) Exponential functionals and principal values related to Brownian Motion, (1997), pp. 73-121. Biblioteca de la Revista Matemática Iberoamericana.  MR 1648657 |  Zbl 0905.60056
[8] Carmona (P.), Petit (F.) and Yor (M.). — Exponential functionals of Lévy processes, O. Barndorff-Nielsen, T. Mikosch and S. Resnick (editors), Lévy processes : theory and applications, (2001), pp. 41-55, Birkhäuser.  MR 1833691 |  Zbl 0979.60038
[9] Dufresne (D.). — The distibution of a perpetuity, with applications to risk theory and pension funding, Scand. Actuar. J. 1-2 (1990), 39-79.  MR 1129194 |  Zbl 0743.62101
[10] Émery (M.). — On the Azéma martingales, Séminaire de Probabilités XXIII, Lecture Notes in Maths. 1372, Springer, 1989.
Numdam |  MR 1022899 |  Zbl 0753.60045
[11] Feller (W.E.). — An introduction to probability theory and its applications, 2nd edn, vol. 2. Wiley, New-York, 1971.  Zbl 0219.60003
[12] Gjessing (H.K.) and Paulsen (J.). — Present value distributions with application to ruin theory and stochastic equations. Stochastic Process. Appl. 71 (1997), 123-144.  MR 1480643 |  Zbl 0943.60098
[13] Hawkes (J.). — On the potential theory of subordinators. Z. Wahrscheinlichkeitstheorie verw. Gebiete 24 (1975), 167-193.  MR 388553 |  Zbl 0402.60074
[14] Jain (N.C.) and Pruitt (W.E.). — Lower tail probabilities estimates for subordinators and nondecreasing random walks, Ann. Probab. 15 (1987), 75-102.
Article |  MR 877591 |  Zbl 0617.60023
[15] Krein (M.G.). — On an extrapolation problem due to Kolmogorov. Dokl. Akad. Nauk. SSSR 46 (1945), 306-309.  MR 12700 |  Zbl 0063.03356
[16] Lamperti (J.W.). — Semi-stable Markov processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 22 (1972), 205-225.  MR 307358 |  Zbl 0274.60052
[17] Lubensky (D.K.) and Nelson (D.R.).— Single molecule statistics and the polynucleotide unzipping transition, Preprint, 2001. Available at arXiv:cond-mat/0107423v1.
[18] Pakes (A.G.). — Remarks on converse Carleman and Krein criteria for the classical moment problem, J. Austral. Math. Soc. 71 (2001), 81-104.  MR 1840495 |  Zbl 0992.44003
[19] Pedersen (H.L.). — On Krein's theorem for indeterminacy of the classical moment problem, J. Approx. Theor. 95 (1998), 90-100.  MR 1645978 |  Zbl 0924.44009
[20] Pollack (M.) and Siegmund (D.).— A diffusion process and its applications to detecting a change in the drift of Brownian motion, Biometrika 72 (1985), 267-280.  MR 801768 |  Zbl 0571.60084
[21] Sato (K.-I.). — Lévy processes and infinitely divisible distributions, Cambridge University Press, Cambridge, 1999.  MR 1739520 |  Zbl 0973.60001
[22] Simon (B.). — The classical moment problem as a self adjoint finite difference operator, Adv. in Maths. 137 (1998), 82-203.  MR 1627806 |  Zbl 0910.44004
[23] Stieltjes (T.J.). — Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse 8 (1894-95), 1-122 and 9, 5-47.
Numdam |  JFM 25.0326.01
[24] Stoyanov (J.). — Krein condition in probabilistic moment problems, Bernoulli 6 (2000), 939-949.
Article |  MR 1791909 |  Zbl 0971.60017
[25] Urbanik (K.). - Functionals of transient stochastic processes with independent increments, Studia Math. 103 (3) (1992), 299-315.
Article |  MR 1202015 |  Zbl 0809.60068
[26] Williams (D.). - Diffusions, Markov processes, and martingales vol. 1: Foundations, Wiley, New-York, 1979.  MR 531031 |  Zbl 0402.60003
[27] Yor (M.). — Sur certaines fonctionnelles exponentielles du mouvement brownien réel, J. Appl. Probab. 29 (1992), 202-208.  MR 1147781 |  Zbl 0758.60085
[28] Yor (M.). — Some aspects of Brownian motion, Part II : Some recent martingale problems, Lectures in Mathematics, ETH Zürich, Birkhäuser, 1997.  MR 1442263 |  Zbl 0880.60082
[29] Yor (M.). — Exponential functionals of Brownian motion and related processes, Springer Finance, Berlin, 2001.  MR 1854494 |  Zbl 0999.60004
Copyright Cellule MathDoc 2014 | Crédit | Plan du site