In this paper we analyze the limit set of nonelementary subgroups acting by isometries on the product of two pinched Hadamard manifolds. Following M. Burger’s and P. Albuquerque’s works, we study the properties of Patterson-Sullivan’s measures on the limit sets of graph groups associated to convex cocompact groups.
@article{TSG_2006-2007__25__105_0, author = {Dal{\textquoteright}Bo, Fran\c{c}oise and Kim, Inkang}, title = {Shadow lemma on the product of {Hadamard} manifolds and applications}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {105--119}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, year = {2006-2007}, doi = {10.5802/tsg.250}, mrnumber = {2478811}, zbl = {1163.53320}, language = {en}, url = {http://www.numdam.org/articles/10.5802/tsg.250/} }
TY - JOUR AU - Dal’Bo, Françoise AU - Kim, Inkang TI - Shadow lemma on the product of Hadamard manifolds and applications JO - Séminaire de théorie spectrale et géométrie PY - 2006-2007 SP - 105 EP - 119 VL - 25 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/tsg.250/ DO - 10.5802/tsg.250 LA - en ID - TSG_2006-2007__25__105_0 ER -
%0 Journal Article %A Dal’Bo, Françoise %A Kim, Inkang %T Shadow lemma on the product of Hadamard manifolds and applications %J Séminaire de théorie spectrale et géométrie %D 2006-2007 %P 105-119 %V 25 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/tsg.250/ %R 10.5802/tsg.250 %G en %F TSG_2006-2007__25__105_0
Dal’Bo, Françoise; Kim, Inkang. Shadow lemma on the product of Hadamard manifolds and applications. Séminaire de théorie spectrale et géométrie, Volume 25 (2006-2007), pp. 105-119. doi : 10.5802/tsg.250. http://www.numdam.org/articles/10.5802/tsg.250/
[1] Patterson-Sullivan theory in higher rank symmetric spaces, Geom. Funct. Anal., Volume 9 (1999) no. 1, pp. 1-28 | MR | Zbl
[2] Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal., Volume 7 (1997) no. 1, pp. 1-47 | MR | Zbl
[3] Structure conforme au bord et flot géodésique d’un -espace, Enseign. Math. (2), Volume 41 (1995) no. 1-2, pp. 63-102 | Zbl
[4] Intersection, the Manhattan curve, and Patterson-Sullivan theory in rank , Internat. Math. Res. Notices (1993) no. 7, pp. 217-225 | MR | Zbl
[5] Géométrie d’une famille de groupes agissant sur le produit de deux variétés d’Hadamard, Séminaire de Théorie Spectrale et Géométrie, No. 15, Année 1996–1997 (Sémin. Théor. Spectr. Géom.), Volume 15, Univ. Grenoble I, Saint, 1997, pp. 85-98 | Numdam | Zbl
[6] Remarques sur le spectre des longueurs d’une surface et comptages, Bol. Soc. Brasil. Mat. (N.S.), Volume 30 (1999) no. 2, pp. 199-221 | Zbl
[7] A criterion of conjugacy for Zariski dense subgroups, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000) no. 8, pp. 647-650 | Zbl
[8] Marked length rigidity for symmetric spaces, Comment. Math. Helv., Volume 77 (2002) no. 2, pp. 399-407 | Zbl
[9] Some negatively curved manifolds with cusps, mixing and counting, J. Reine Angew. Math., Volume 497 (1998), pp. 141-169 | Zbl
[10] La propriété de Markov pour les groupes hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) (Progr. Math.), Volume 83, Birkhäuser Boston, Boston, MA, 1990, pp. 165-187 | Zbl
[11] Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dynam. Systems, Volume 10 (1990) no. 3, pp. 483-512 | Zbl
[12] Geometry of horospheres, J. Differential Geom., Volume 12 (1977) no. 4, p. 481-491 (1978) | MR | Zbl
[13] Ergodic theory and rigidity on the symmetric space of non-compact type, Ergodic Theory Dynam. Systems, Volume 21 (2001) no. 1, pp. 93-114 | MR | Zbl
[14] Marked length rigidity of rank one symmetric spaces and their product, Topology, Volume 40 (2001) no. 6, pp. 1295-1323 | MR | Zbl
[15] Rigidity on symmetric spaces, Topology, Volume 43 (2004) no. 2, pp. 393-405 | MR | Zbl
[16] Isospectral finiteness on hyperbolic 3-manifolds, Comm. Pure Appl. Math., Volume 59 (2006) no. 5, pp. 617-625 | MR | Zbl
[17] Limit sets of discrete groups acting on symmetric spaces, Fakultät für Mathematik, Mathematisches Institut II (Math. Inst. II) (2002) (Dissertation http://digbib.ubka.uni-karlsruhe.de/volltexte/7212002)
[18] The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, 143, Cambridge University Press, Cambridge, 1989 | MR | Zbl
[19] Sous-groupes discrets des groupes de Lie semi-simples réels et p-adiques, Paris VII (2001) (Ph. D. Thesis)
Cited by Sources: