The Gluck and Ziller problem with the euclidean metric
Séminaire de théorie spectrale et géométrie, Volume 22 (2003-2004), pp. 83-92.
@article{TSG_2003-2004__22__83_0,
     author = {Borrelli, Vincent},
     title = {The {Gluck} and {Ziller} problem with the euclidean metric},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {83--92},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {22},
     year = {2003-2004},
     mrnumber = {2136137},
     zbl = {1073.53081},
     language = {en},
     url = {http://www.numdam.org/item/TSG_2003-2004__22__83_0/}
}
TY  - JOUR
AU  - Borrelli, Vincent
TI  - The Gluck and Ziller problem with the euclidean metric
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2003-2004
SP  - 83
EP  - 92
VL  - 22
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/item/TSG_2003-2004__22__83_0/
LA  - en
ID  - TSG_2003-2004__22__83_0
ER  - 
%0 Journal Article
%A Borrelli, Vincent
%T The Gluck and Ziller problem with the euclidean metric
%J Séminaire de théorie spectrale et géométrie
%D 2003-2004
%P 83-92
%V 22
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/item/TSG_2003-2004__22__83_0/
%G en
%F TSG_2003-2004__22__83_0
Borrelli, Vincent. The Gluck and Ziller problem with the euclidean metric. Séminaire de théorie spectrale et géométrie, Volume 22 (2003-2004), pp. 83-92. http://www.numdam.org/item/TSG_2003-2004__22__83_0/

[1] V. Borrelli AND O. Gil-Medrano, A critical radius for unit Hopf vector fields on spheres, Preprint. | MR

[2] B.-Y. Chen, Riemannian submanifolds, Handbook of Differential Geometry, Vol 1, 2000, Elsevier. | MR | Zbl

[3] O. Gil-Medrano Volume and Energy of vector fields on spheres. A survey, Differential Geometry,Valencia 2001,167-178,World Sci. Publishing, River Edge,NJ2002. | MR | Zbl

[4] O. Gil-Medrano Unit vector fields that are critical points of the volume and the energy : characterization and examples, to appear in Complex, contact and symmetric spaces : papers in honour of Lieven Vanheche. Progress in Math. Birkhauser. | MR | Zbl

[5] O. Gil-Medrano AND E. Llinares-Fuster, Second variation of Volume and Energy of vector fields. Stabilit of Hopf vector fields, Math. Ann. 320 ( 2001), 531-545. | MR | Zbl

[6] H. Gluck AND W. Ziller, On the volume of a unit vector field on the three-sphere, Comment Math. Helv. 61 ( 1986), 177-192. | MR | Zbl