@article{TSG_2003-2004__22__83_0, author = {Borrelli, Vincent}, title = {The {Gluck} and {Ziller} problem with the euclidean metric}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {83--92}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {22}, year = {2003-2004}, mrnumber = {2136137}, zbl = {1073.53081}, language = {en}, url = {http://www.numdam.org/item/TSG_2003-2004__22__83_0/} }
TY - JOUR AU - Borrelli, Vincent TI - The Gluck and Ziller problem with the euclidean metric JO - Séminaire de théorie spectrale et géométrie PY - 2003-2004 SP - 83 EP - 92 VL - 22 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/item/TSG_2003-2004__22__83_0/ LA - en ID - TSG_2003-2004__22__83_0 ER -
Borrelli, Vincent. The Gluck and Ziller problem with the euclidean metric. Séminaire de théorie spectrale et géométrie, Volume 22 (2003-2004), pp. 83-92. http://www.numdam.org/item/TSG_2003-2004__22__83_0/
[1] A critical radius for unit Hopf vector fields on spheres, Preprint. | MR
AND ,[2] Riemannian submanifolds, Handbook of Differential Geometry, Vol 1, 2000, Elsevier. | MR | Zbl
,[3] Volume and Energy of vector fields on spheres. A survey, Differential Geometry,Valencia 2001,167-178,World Sci. Publishing, River Edge,NJ2002. | MR | Zbl
[4] Unit vector fields that are critical points of the volume and the energy : characterization and examples, to appear in Complex, contact and symmetric spaces : papers in honour of Lieven Vanheche. Progress in Math. Birkhauser. | MR | Zbl
[5] Second variation of Volume and Energy of vector fields. Stabilit of Hopf vector fields, Math. Ann. 320 ( 2001), 531-545. | MR | Zbl
AND ,[6] On the volume of a unit vector field on the three-sphere, Comment Math. Helv. 61 ( 1986), 177-192. | MR | Zbl
AND ,