@article{TSG_2002-2003__21__61_0, author = {L\'evy, Thierry}, title = {Comment choisir une connexion au hasard ?}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {61--73}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {21}, year = {2002-2003}, mrnumber = {2052825}, zbl = {1120.81064}, language = {fr}, url = {http://www.numdam.org/item/TSG_2002-2003__21__61_0/} }
Lévy, Thierry. Comment choisir une connexion au hasard ?. Séminaire de théorie spectrale et géométrie, Volume 21 (2002-2003), pp. 61-73. http://www.numdam.org/item/TSG_2002-2003__21__61_0/
[1] Stochastic Lie group-valued measures and their relations to stochastic curve integrals, gauge fields and Markov cosurfaces. In Stochastic processes - mathematics and physics (Bielefeld, 1984), pages 1-24. Springer, Berlin, 1986. | MR | Zbl
, , and .[2] YM2: continuum expectations, lattice convergence, and lassos. Comm. Math. Phys., 123(4):575-616, 1989. | MR | Zbl
.[3] A Poincaré lemma for connection forms. J. Funct.Anal., 63(1): 1-46, 1985. | MR | Zbl
.[4] Wilson loops in the light of spin networks, math-ph/0306059, 2003. | MR | Zbl
.[5] Yang-mills measure on compact surfaces. Mem. Amer. Math. Soc, To appear. | MR | Zbl
.[6] Recursion equations in gauge field theories. Sov. Phys. JETP, 42(3):413-418, 1975.
.[7] Gauge invariant functions of connections. Proc. Amer. Math. Soc, 121(3):897-905, 1994. | MR | Zbl
.[8] Gauge theory on compact-surfaces. Mem. Amer. Math. Soc, 126(6 00):viii+85, 1997, | MR | Zbl
.[9] On quantum gauge theories in two dimensions. Comm. Math. Phys., 141(1): 153-209, 1991. | MR | Zbl
.[10] Two-dimensional gauge theories revisited. J. Geom. Phys., 9(4):303-368, 1992. | MR | Zbl
.