Variants on Alexandrov reflection principle and other applications of maximum principle
Séminaire de théorie spectrale et géométrie, Tome 19 (2000-2001) , pp. 93-121.
@article{TSG_2000-2001__19__93_0,
     author = {Sa Earp, Ricardo and Toubiana, Eric},
     title = {Variants on Alexandrov reflection principle and other applications of maximum principle},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {93--121},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {19},
     year = {2000-2001},
     zbl = {1011.53005},
     mrnumber = {1909079},
     language = {en},
     url = {http://www.numdam.org/item/TSG_2000-2001__19__93_0/}
}
Sa Earp, Ricardo; Toubiana, Eric. Variants on Alexandrov reflection principle and other applications of maximum principle. Séminaire de théorie spectrale et géométrie, Tome 19 (2000-2001) , pp. 93-121. http://www.numdam.org/item/TSG_2000-2001__19__93_0/

[1] U. Abresch. Constant mean curvature tori in terms of elliptic fonctions. J. Reine Ang. Math. 374,169-192 ( 1987) | MR 876223 | Zbl 0597.53003

[2] R. Aiyama and K. Akutagawa. Kenmotsu type representation formula for surfaces with prescribed mean curvature in the hyperbolic 3-space, J. Math. Soc. Japan, 52, no.4, 877-898 ( 2000). | MR 1774634 | Zbl 0995.53047

[3] R. Aiyama and K. Akutagawa. Kenmotsu type representation formula for surfaces with prescribed mean curvature in the 3 sphere, Tohoku Math. J. 52, 95-105 ( 2000). | MR 1740545 | Zbl 1008.53012

[4] A.D. Alexandrov. Uniqueness theorems for surfaces in the large. I, (Russian) Vestnik Leningrad Univ. Math. 11,5-17 ( 1956). | MR 86338 | Zbl 0122.39601

[5] T. Aubin Some nonlinear problems in Riemannian geometry. Springer ( 1998). | MR 1636569 | Zbl 0896.53003

[6] J.L. Barbosa. Constant mean curvature surfaces boundedby a plane curve. Mat. Contemp. 1,3-15 ( 1991). | MR 1304297 | Zbl 0854.53010

[7] J.L. Barbosa and R. Bérard. Eigenvalue and "twisted" eigenvalues problems, applications to CMC- surfaces. To appear in J. Math. Pures and Appl. | Zbl 0958.58006

[8] J.L. Barbosa, R. Sa Earp. New results on prescribed mean curvature hypersurfacesin Space Forms. An Acad. Bras. Cl. 67, No 1,1-5 ( 1995). | Zbl 0828.53053

[9] J.L. Barbosa and R. Sa Earp. Prescribed mean curvature hypersurfaces in H n+1 (-1 ) with convexplanar boundary, I. Geom. Dedicata, 71, 61-74 ( 1998). | MR 1624726 | Zbl 0922.53023

[10] J.L. Barbosa and R. Sa Earp. Prescribed mean curvature hypersurfaces in Hn+1 with convex planar boundary, II. Séminaire de théorie spectrale et géométrie de Grenoble 16, 43-79 ( 1998). | EuDML 114424 | Numdam | Zbl 0942.53044

[11] P. Bérard and L. Hauswirth. General curvature estimatesfor stable H-surfaces immersed into space form. J. Math. Pures Appl. 78, 667-700 ( 1999). | MR 1711051 | Zbl 0960.53033

[12] R. Bérard, L. Lima and W. Rossman. Index growth of hypersurfaces with constant mean curvature. To appear in Math. Z. | MR 1879330 | Zbl 0998.53005

[13] H. Brezis and J.-M. Coron. Multiple solutions of H-systems and Rellich's conjecture. Commun. Pures Appl. Math. XXXVII, 149-187, 1984. | MR 733715 | Zbl 0537.49022

[14] A.I. Bobenko. All constant mean curvature tori in R3, S3, H3 in terms of elliptic functions. Math. Ann. 290,209-245 ( 1991). | EuDML 164816 | MR 1109632 | Zbl 0711.53007

[15] F. Braga Brito and R. Sa Earp. Geometrie configurations of constant mean curvature surfaces with planar boundary. An. Acad. Bras. Ci. 63, No 1, 5-19 ( 1991). | MR 1115489 | Zbl 0803.53011

[16] F. Braga Brito, W. Meeks Iii, H. Rosenberg and R. Sa Earp. Structure theorems for constant mean curvature surfaces bounded by a planar curve. Indiana Univ. Math. J. 40, No 1, 333 343 ( 1991). | MR 1101235 | Zbl 0759.53003

[17] F. Braga Brito and R. Sa Earp. On the Structure of certain Weingarten surfaces with boundary a circle. An. Fac. Sci. Toulouse VI, No 2, 243-255 ( 1997). | EuDML 73418 | Numdam | MR 1611824 | Zbl 0901.53003

[18] R. Bryant. Surfaces of mean curvature one in hyperbolic space, Asterisque 154-155 , Soc. Math de France, 321-347 ( 1987). | MR 955072 | Zbl 0635.53047

[19] R. Bryant. Complex analysis and a class of Weingarten surfaces. Preprint.

[20] L. Caffarelli, B. Gidas and J. Spruck. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. XLII, 271-297 ( 1989). | MR 982351 | Zbl 0702.35085

[21] L. Caffarelli, L. Nirenberg, J. Spruck. The Dirichlet problemfor nonlinear second-order elliptic equations III. Functions of the eigenvalues of the Hessian. Acta Math. 155, 261-301 ( 1985). | MR 806416 | Zbl 0654.35031

[22] L. Caffarelli, L. Nirenberg, J. Spruck. Nonlinear second-order elliptic equations V. The Dirichlet problem for Weingarten surfaces. Comm. Pure Appl. Math. XLI, 47-70 ( 1988). | MR 917124 | Zbl 0672.35028

[23] P. Castillon. Sur les sous-variétés à courbure moyenne constante dans l'espace hyerbolique. Doctoral Thesis, Université Joseph Fourier (Grenoble I) ( 1995).

[24] S.S. Chern. On special W-surface. Trans. Amer. Math. Soc. 783-786 ( 1955). | Zbl 0067.13801

[25] R. Collin, Topologie et courbure des surfaces minima les proprement plongées de R3. Ann. Math. 2nd Series 145, 1-31 ( 1997). | MR 1432035 | Zbl 0886.53008

[26] R. Collin, L. Hauswirth and H. Rosenberg. The geometry of finite topology Bryant surfaces.To appear in Annals of mathematics. | Zbl 1066.53019

[27] S.Y. Cheng and S.-T. Yau. Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. XXVIII, 333-354 ( 1975). | MR 385749 | Zbl 0312.53031

[28] M. Dajczer and M. Do Carmo. Helicoidal surfaces with constant mean curvature. Tôhoku Math J. 34 , 425-435 ( 1982). | MR 676120 | Zbl 0501.53003

[29] M.P. Do Carmo, H.B. Jr. Lawson On Alexandrov - Bernstein theorems in hyperbolic space. Duke Math. J. 50, No. 4 ( 1983). | MR 726314 | Zbl 0534.53049

[30] M. Do Carmo, J. Gomes, G. Thorbergsson. The influence of the boundary behaviour on hypersurfaces with constant mean curvature in Hn+1. Comm. Math. Helvitici 61, 429-491 ( 1986). | EuDML 140062 | MR 860133 | Zbl 0614.53046

[31] F. Duzaar and K. Steffen. The Plateau problem for parametric surfaces with prescribed mean curvature In: Geometric Analysis and Calculus of Variations (edited by J. Jürgen), pp.13-70, International Press ( 1996). | MR 1449402 | Zbl 0935.53007

[32] R. Finn. Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature. J.Analyse Math.14, 139-160 ( 1965). | MR 188909 | Zbl 0163.34604

[33] B. Gidas, W-M Ni and L. Nirenberg. Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209-243 ( 1979). | MR 544879 | Zbl 0425.35020

[34] D. Gilbarg and N.S. Trudinger. Elliptic partial differential equations of second order. Springer ( l983). | Zbl 0562.35001

[35] J.M. Gomes. Sobre hipersuperficies comcurvatura média constante no espaço hiperbólico. Doctoral thesis, IMPA ( 1985).

[36] R.D. Gulliver. The Plateau problem for surfaces of prescribed mean curvature in a Riemannian manifold. J. Diff. Geom. 8, 317-330 ( 1972). | MR 341260 | Zbl 0275.53033

[37] R.D. Gulliver. Regularity of minimizing surfaces of prescribed mean curvature. Ann. of Math. 97, No. 2, 275-305 ( 1973). | MR 317188 | Zbl 0246.53053

[38] P. Hartman, W. Wintner. Umbilical points and W-surfaces. Amer. J. Math. 76, 502-508 ( 1954). | MR 63082 | Zbl 0055.39601

[39] E. Hebey. Introduction à l'analyse non linéaire sur les variétés. Diderot Editeur ( 1997). | Zbl 0918.58001

[40] S. Hildebrandt. On the Plateau problem for surfaces of constant mean curvature.Commun. Pure Appl. Math. XXIII, 97-114 ( 1970). | MR 256276 | Zbl 0181.38703

[41] D. Hoffman and H. Karcher. Complete embedded surfaces of finite total curvature. Geometry V (R. Osserman, ed.), Springer, 5-93 ( 1997). | MR 1490038 | Zbl 0890.53001

[42] J. Hounie and M.L. Leite. The maximum principle for hypersurfaces with vanishing curvature functions. J. Diff. Geom. 41, 247-258 ( 1995). | MR 1331967 | Zbl 0821.53007

[43] J. Hounie and M.L. Leite. Two-ended hypersurfaces with zero scalar curvature. Indiana Univ. Math. J. 48, No. 3, 867-882 ( 1999). | MR 1736975 | Zbl 0929.53033

[44] D. Hoffman and W. Meeks. The strong halfspace theorem for minimal surfaces. Invent iones Math. 101, 373-377 ( 1990). | EuDML 143807 | MR 1062966 | Zbl 0722.53054

[45] H. Hopf. Differential geometry in the large. Lect. Notes in Math., Springer, 1000 ( 1983). | MR 707850 | Zbl 0526.53002

[46] W-Y Hsiang. On generalization of theorems of A. D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature. Duke Math. J. 49, No.3 ( 1982). | MR 672494 | Zbl 0496.53006

[47] N. Kapouleas. Complete constant mean curvature surfaces in Euclidean three space. Ann. Math. 131, 239-330 ( 1990). | MR 1043269 | Zbl 0699.53007

[48] N. Kapouleas. Compact constant mean curvature surfaces in Euclidean three-space. J. Diff. Geom. 33, 683-715 ( 1991). | MR 1100207 | Zbl 0727.53063

[49] K. Kenmotsu. Weierstrass formula for surfaces of prescribed mean curvature, Math. Ann. 245, 89-99 ( 1979). | EuDML 163312 | MR 552581 | Zbl 0402.53002

[50] N. Korevaar, R. Kusner and B. Solomon. The structure of complete embedded surfaces with constant mean curvature. J. Diff. Geom. 30, 465-503 ( 1989). | MR 1010168 | Zbl 0726.53007

[51] N. Korevaar, R. Kusner, W.H. Meeks Iii and B. Solomon. Constant mean curvature surfacesin hyperbolic Space. Amer. J. Math. 114, 1-143 ( 1992). | MR 1147718 | Zbl 0757.53032

[52] M. Koiso, Symmetry of hypersurfaces of constant mean curvature with symmetric boundary. Math. Z. 191,567-574 ( 1986). | MR 832814 | Zbl 0563.53007

[53] M. Kokubu. Weierstrass representation for minimal surfaces in hyperbolic space, Tohoku Math. J. (2) 49, no. 3, 367-377 ( 1997). | MR 1464184 | Zbl 0912.53041

[54] N. Korevaar. Sphere theorems via Alexandrov for constant Weingarten curvature hyper surfaces-appendix to a note of A. Ros. J. Diff. Geom. 27, 221-223 ( 1988). | Zbl 0638.53052

[55] N. Korevaar, R. Mazzeo, F. Pacard and R. Schoen. Refined asymptotics for constant scalar curvature metries with isolated singularities. Invent. Math. 135, 233-272 ( 1999). | MR 1666838 | Zbl 0958.53032

[56] R. Kusner. Global Geometry of Extremal Surfaces in Three-Space, Doctoral Thesis, University of California, Berkeley ( 1985).

[57] B. Lawson. Complete minimal surfaces in S3. Ann. Math. 92, 335-374 ( 1970). | MR 270280 | Zbl 0205.52001

[58] B. Lawson. Lectures on minimal submanifolds. Secon edition, Publish or Perish ( 1980). | Zbl 0434.53006

[59] R. Langevin and H. Rosenberg. A maximum principle at infinity for minimal surfaces and applications. Duke Math. J. 57, 819-828 ( 1988). | MR 975123 | Zbl 0667.49024

[60] C. Li Mononicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains. Commun. Part. Diff. Eq. 16, No 2&3, 491-526 ( 1991). | MR 1104108 | Zbl 0735.35005

[61] C. Li Mononicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains. Commun. Part. Diff. Eq. 16, No 4&5, 585-615 ( 1991). | MR 1113099 | Zbl 0741.35014

[62] G. Levitt, H. Rosenberg. Symmetry of constant mean curvature hypersurfaces in hyperbolic space. Duke Math. J. 52, No. 1 ( 1985). | MR 791291 | Zbl 0584.53027

[63] R. López and S. Montiel, Constant mean curvalure dises with bounded area. Proc. Amer Math. Soc. 123, 1555-1558 ( 1995). | MR 1286001 | Zbl 0840.53006

[64] F.J. Lopez and A. Ros. On embedded complete minimal surfaces of genus zero. J. Diff. Geom. 33, No 1, 293 300 ( 1991). | MR 1085145 | Zbl 0719.53004

[65] J. Mccuan. Symmetry via spherical reflection. To appear in J. Diff. Anal. | MR 1794577 | Zbl 1010.53007

[66] W. Meeks Iii. The topology and geometry of embedded surfaces of constant mean curvature. J. Diff. Geom. 27,539-552 ( 1988). | MR 940118 | Zbl 0617.53007

[67] W. Meeks Iii and H. Rosenberg. The maximum principle al infinity for minimal surfaces in flat 3-manifolds. Comm. Math. Helv. 65, 255-270 ( 1990). | MR 1057243 | Zbl 0713.53008

[68] W. Meeks Iii and H. Rosenberg. The geometry and conformal structure of properly embedded minimal surfaces of finite topology in F3. Invent. Math. 114, 625-639 ( 1993). | MR 1244914 | Zbl 0803.53007

[69] W. Meeks Iii and S.-T. Yau. The existence of embedded minimal surfaces and the problem of uniqueness. Math. Z.179,151-168 ( 1982). | MR 645492 | Zbl 0479.49026

[70] R. Molzon. Symmetry and overdetermined boundary value problems. Forum Math. 3,143-156 ( 1991). | MR 1092579 | Zbl 0789.35118

[71] C. Jr. Morrey The problem of Plateau on a Riemannian manifold. Ann. of Math. 49, No. 4, 807-851, 1948. | MR 27137 | Zbl 0033.39601

[72] B. Nelli, H. Rosenberg. Some remarks on embedded hypersurfaces in Hyperbolic Space of constant mean curvature and spherical boundary. Ann. Glob. An. and Geom. 13, 23-30 ( 1995) | MR 1327108 | Zbl 0831.53039

[73] B. Nelli and R. Sa Earp. Some Properties of Hypersurfaces of Prescribed Mean Curvature in Hn+1. Bull. Sc. Math. 120. No 6, 537-553 ( 1996). | MR 1420970 | Zbl 0872.53008

[74] B. Nelli and J. Spruck. On the existence and uniqueness of constant mean curvature hypersurfaces in hyperbolic space.Geometric Analysis and Calculus of Variations, International Press, J. Jost (Ed.), 253-266 ( 1996). | MR 1449411 | Zbl 0936.35069

[75] J. Ordóňes. Superficies helicoidais com curvatura constante no espaço de formas tridimensionais. Doctoral Thesis, PUC-Rio ( 1995).

[76] U. Pinkall and I. Stirling. On the classification of constant mean curvature tori. Ann. Math. 130, 407-451 ( 1989). | MR 1014929 | Zbl 0683.53053

[77] M.H. Protter and H. F. Weinberger. Maximum principles in differential equations. Elglewood Cliffs., New Jersey Prentice-Hall ( 1967). | MR 219861 | Zbl 0153.13602

[78] J. Ratcliffe. Foundations of hyperbolic manifolds. Springer ( 1999). | MR 1299730 | Zbl 0809.51001

[79] H. Rosenberg. Hypersurfaces of constant curvature in space forms. Bull. Sc. Math. 2e série 117, 211 -239 ( 1993). | MR 1216008 | Zbl 0787.53046

[80] H. Rosenberg. Some recent developments in the theory of properly embedded minimal surfaces in R3. Séminaire Bourbaki, 44ème année, No 759 ( 1991-92). | Numdam | Zbl 0789.53003

[81] L. Rodriguez and H. Rosenberg. Half-space theorems for mean curvature one surfaces in hyperbolic space. Proc. Amer. Math. Soc. 126, No 9, 2755-2762 ( 1998). | MR 1458259 | Zbl 0904.53041

[82] A. Ros and H. Rosenberg. Constant mean curvature surfaces in a half-space with boundary in the boundary of the half-space. J. Diff. Geom. 44, 807-817 ( 1996) | MR 1438193 | Zbl 0883.53009

[83] H. Rosenberg and R. Sa Earp. Some remarks on surfaces of prescribed mean curvature. Differential Geometry (Symposium in honor of M. do Carmo). Pitman monographs and surveys in Pure and Applied Mathematics, 123-148 ( 1991). | MR 1173038 | Zbl 0773.53002

[84] H. Rosenberg and R. Sa Earp. Some Structure Theorems for Complete Constant Mean Curvature Surfaces with Boundary a Convex Curve. Proc. Amer. Math. Soc. 113, No 4, 1045-1053 ( 1991). | MR 1072337 | Zbl 0748.53003

[85] H. Rosenberg and R. Sa Earp. The geometry of properly embedded special surfaces in R3; e.g.surfaces satisfying aH + bK = 1, where a and b are positive. Duke Math. J.73, No 2, 291-306 ( 1994). | MR 1262209 | Zbl 0802.53002

[86] W. Rossman and K. Sato. Constant mean curvature surfaces in hyperbolic 3-space with two ends. J. Exp.Math., No 1,101-1197 ( 1998). | MR 1677103 | Zbl 0980.53081

[87] W. Rossman, M. Umehara and K. Yamada. Irreducible constant mean curvature l surfaces in hyperbolic space with positive genus. Tôhoku Math. J., 449-484, 49 ( 1997). | MR 1478909 | Zbl 0913.53025

[88] R. Sa Earp. Recent developments on the structure of compact surfaces with planar boundary In: The Problem of Plateau (edited by Th.M. Rassias), pp. 245-257, World Scientific ( 1992). | MR 1209221 | Zbl 0790.53008

[89] R. Sa Earp. On two mean curvature equations in hyperbolic space. In: New Approaches in Nonlinear Analysis (editedby Th.Rassias), Hadronic Press, U.S.A., 171-182 ( 1999). | Zbl 0960.53034

[90] R. Sa Earp and E. Toubiana. Sur les surfaces de Weingarten spéciales de type minimal Boletim da Socie dade Brasileira deMatemática, 26, No. 2, 129-148 ( 1995). | MR 1364263 | Zbl 0864.53004

[91] R. Sa Earp and E. Toubiana. Classification des Surfaces Speciales de Revolution de Type Delaunay. Amer. J. Math. 121, No 3, 671-700 ( 1999). | MR 1738404 | Zbl 0972.53007

[92] R. Sa Earp and E. Toubiana. Symmetry of properly embedded special Weingarten surfacesin H3. Trans. Amer. Math. Soc. 352, No 12, 4693-4711 ( 1999). | MR 1675186 | Zbl 0989.53003

[93] R. Sa Earp and E. Toubiana. Some applications of maximum principle to hypersurfaces in Euclidean and hyperbolic space. In: New Approaches in Nonlinear Analysis (edited by Th.Rassias), Hadronic Press, U.S.A., 183-202 ( 1999). | Zbl 0959.53038

[94] R. Sa Earp and E. Toubiana. Existence and uniqueness of minimal graphs in hyperbolic space. Asian Journal of Mathematics (new Journal), (Editors-in-Chief: S-T Yau (Harvard) e R. Chan (Hong Kong)),4, No. 3, 669-694, International Press ( 2000). | MR 1796699 | Zbl 0984.53005

[95] R. Sa Earp and E. Toubiana. On the Geometry of Constant Mean Curvature One Surfaces in Hyperbolic Space. Illinois J. Math. 45, No 2 ( 2001). | MR 1878610 | Zbl 0997.53042

[96] R. Sa Earp and E. Toubiana. Introduction à la géométrie hyperbolique et aux surfaces de Riemann. Diderot Editeur, Paris ( 1997). | Zbl 0944.30001

[97] R. Sa Earp and E. Toubiana. Meromorphic data for mean curvature one surfaces in hyperbolic space. Preprint.

[98] R. Sa Earp and E. Toubiana. A Weierstrass-Kenmotsu formula for prescribed mean curvature surfaces in hyperbolic space. Séminaire de Théorie Spectrale et Géométrie de l'Institut Fourier de Grenoble, 19, 9-23 ( 2001). | EuDML 114462 | Numdam | MR 1909073 | Zbl 1014.53006

[99] R. Sa Earp and E. Toubiana. Meromorphic data for mean curvature one surfaces in hyperbolic space, II. Preprint. | Zbl 1063.53010

[100] B. Semmler. Surfaces de courbure moyenne constante dans les espaces euclidien et hyperbolic, Docto Thesis, Univ. Paris VII, ( 1997).

[101] J. Serrin. A symmetry problem in potential theory. Arch. Rat. Mech. Anal. 43,304-318 ( 1971). | MR 333220 | Zbl 0222.31007

[102] R. Schoen. Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Diff. Geom. 18, 791-809 ( 1983). | MR 730928 | Zbl 0575.53037

[103] M. Soret Déformations de surfaces minimales. Thèse de Doctorat, Univ. de Paris VII ( 1993).

[104] A.J. Small. Surfaces of constant mean curvature 1 in H3 and algebraic curves on a quadric. Proc. AMS 122 No4, 1211-1220 ( 1994). | MR 1209429 | Zbl 0823.53044

[105] B. Smyth. The generalization of Delaunay's theorem to constant mean curvature surfaces with conti nuous internai symmetry. Preprint.

[106] M. Spivak. A comprehensive introduction to differential geometry. Publish or Perish Volume IV, second edition ( 1979). | Zbl 0439.53004

[107] K. Steffen. Parametric surfaces of prescribed mean curvature In: Calculus of variations and geometrie evolution problems (edited by S. Hildebrant and M. Struwe), 211-265, Lecture notes in Mathematics 1713, Springer ( 1999). | MR 1731641 | Zbl 0955.53033

[108] M. Struwe. Large H-surfaces via the Mountain-pass lemma. Math. Ann. 270, 441-459 ( 1985). | MR 774369 | Zbl 0582.58010

[109] M. Struwe. Plateau's problem and the calculus of variations. Math. Notes 35, Princeton Univ. Press ( 1989). | Zbl 0694.49028

[110] M. Umehara and K. Yamada. Complete surfaces of constant mean curvature-1 in the hyperbolic 3-space. Annals of Math. 137, 611-638 ( 1993). | MR 1217349 | Zbl 0795.53006

[111] M. Umehara and K. Yamada. A parametrization of the Weierstrass formulae and perturbation of some minimal surfaces in R3 into the hyperbolic 3-space. J. Reine Angew. Math. 432, 93-116 ( 1992). | MR 1184761 | Zbl 0757.53033

[112] M. Umehara and K. Yamada. Surfaces of constant mean curvature c in H3(-c2) with prescribed Gauss map. Math. Ann. 304, 203-224 ( 1996). | MR 1371764 | Zbl 0841.53050

[113] H. Wente. An existence theorem for surfaces of constant mean curvature. Math. Anal. Appl. 26, 318-344 ( 1969). | MR 243467 | Zbl 0181.11501

[114] H. Wente. A general existence theorem for surfaces of constant mean curvature. Math. Z. 120, 277-288 ( 1971). | MR 282300 | Zbl 0214.11101

[115] H. Wente. Large solutions to the volume constrained Plateau problem. Arch. Mech. Anal. 75, 59-77 ( 1980). | MR 592104 | Zbl 0473.49029

[116] H. Wente. A counter-example to the conjecture of H. Hopf. Pacific J. Math. 121,193-243 ( 1986). | Zbl 0586.53003

[117] S.-T Yau. Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. XXVIII, 201-228 ( 1975). | MR 431040 | Zbl 0291.31002