Two lectures on spectral invariants for the Schrödinger operator
Séminaire de théorie spectrale et géométrie, Tome 18 (1999-2000) , pp. 77-107.
@article{TSG_1999-2000__18__77_0,
     author = {Novitskii, Mikhail V.},
     title = {Two lectures on spectral invariants for the Schr\"odinger operator},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {77--107},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {18},
     year = {1999-2000},
     zbl = {0973.35145},
     mrnumber = {1812214},
     language = {en},
     url = {http://www.numdam.org/item/TSG_1999-2000__18__77_0/}
}
Novitskii, Mikhail V. Two lectures on spectral invariants for the Schrödinger operator. Séminaire de théorie spectrale et géométrie, Tome 18 (1999-2000) , pp. 77-107. http://www.numdam.org/item/TSG_1999-2000__18__77_0/

[1] Akhiezer, N.I.: Classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. | MR 184042 | Zbl 0135.33803

[2] Conway, J.H., Sloane, N.J.A.: Four dimensional lattices with the same theta series, Intern. Math. Research Notes 4, 93-96 ( 1992). | MR 1159450 | Zbl 0770.11022

[3] Craig, W.: The trace formula for the Schrödinger operator, Comm. Math. Phys. 126, 379-407 ( 1988). | MR 1027503 | Zbl 0681.34026

[4] Eskin, G., Ralston, J. and Trubowitz, E.: Isospectral periodic potentials on Rn. SIAM-AMS Proceedings, 14, 91-96 ( 1984). | MR 773705 | Zbl 0558.34022

[5] Eskin, G., Ralston, J. and Trubowitz, E.: The multidimensional inverse spectral problem with periodic potential, Contemp. Math., 27, 45-56 ( 1984). | MR 741038 | Zbl 0581.58034

[6] Eskin, G., Ralston, J. and Trubowitz, E.: On isospectral periodic potentials in Rn., Comm. on Pure and Appl. Math., 237, 647-676 ( 1984). | MR 752594 | Zbl 0574.35021

[7] Eskin, G., Ralston, J. and Trubowitz, E.: On isospectral periodic potentials in Rn.II, Comm. on Pure and Appl. Math., 237, 715-753 ( 1984). | MR 762871 | Zbl 0582.35031

[8] Eskin, G.: Inverse spectral problem for the Schrödinger operator with periodic magnetic and electric potentials, Séminaire sur les Équations aux Dérivées Partielles, 1988-1989, Exp. No. XIII, 6pp., École Polytech., Palaiseau, 1989. | Numdam | MR 1032289 | Zbl 0702.35236

[9] Eskin, G.: Inverse spectral problem for the Schrödinger operator with periodic vector potential, Comm. Math. Phys., 125, no.2, 263-300 ( 1989). | MR 1016872 | Zbl 0697.35168

[10] Figotin, A. L., Pastur, L. A.: Spectra of random and almost periodic operators, Grundlehrer der Mathematischen Wissenschaften 297, Springer-Verlag, Berlin, 1992. | MR 1223779 | Zbl 0752.47002

[11] Gardner, C., Gbeene, J., Kruskal, R., Miura, R.: Korteweg-de Vries equation and generalizations, VI, Methods for exact solution, Comm. Pure Appl. Math. 27,97-133 ( 1974). | MR 336122 | Zbl 0291.35012

[12] Gesztesy, F., Holden, H., Simon, B., Zhao, Z.: Trace formulas for multidimensional Schrödinger operators, J. Funct Anal. 141, No. 2,449- 465( 1996). | MR 1418515 | Zbl 0864.35030

[13] Gordon, C.,S., Kappeler, T.: On isospectral potentil on tori, Duke Math. J. 63, No. 1, 217-233 ( 1991). | MR 1106944 | Zbl 0732.35064

[14] Gordon, C.,S., Kappeler, T.: On isospectral potentil on flat tori II, Commun, in partial diff. equations 20, No. 3-4, 709-728 ( 1995). | MR 1318086 | Zbl 0849.35085

[15] Johnson, R., Moser, J.: The rotation number for almost periodic potentials, Comm. Math. Phys. 84, 403-438 ( 1982). | MR 667409 | Zbl 0497.35026

[16] Kac, M.: Can you hear the shape of a drum ? Am. Math. Mon. 73, 1-23 ( 1966). | MR 201237 | Zbl 0139.05603

[17] Rappeler, T.: On isospectral potentil on a discrete lattice I, Duke Math. J. 57, No. 1, 135-150 ( 1988). | MR 952228 | Zbl 0696.35140

[18] Kappeler, T.: On isospectral potentil on a discrete lattice II, Adv. in Appl. Math. 9, No. 4,428-438 ( 1988). | MR 968676 | Zbl 0675.35023

[19] Kappeler, T.: Isospectral potentil on a discrete lattice III, Trans. Amer. Math. Soc. 314, No. 2, 815-824 ( 1989). | MR 961624 | Zbl 0706.35112

[20] Karpeshina, Y.E.: Perturbation theory for the Schrödinger operator with a periodic potential, LNM 73, 1-23 ( 1966). | Zbl 0883.35002

[21] Kotany, S.: Ljaponov exponents and spectra for one-dimensional random Schrödinger operators, AMS Conference on Random Matrices and Their Applications, Stochastic Analysis( K. Ito, ed.), North Holland, Amsterdam, 1984, 225-248. | Zbl 0587.60054

[22] Lax, P.: Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure and Appl. Math., 21, 467-490 ( 1968). | MR 235310 | Zbl 0162.41103

[23] Lax, P.: Periodic solutions of the KdV equation, Commun. Pure and Appl. Math., 38, 141-188 ( 1975). | MR 369963 | Zbl 0295.35004

[24] Lax, P.: Trace formulas for the Schrödinger operator, Commun. Pure and Appl. Math. 47, no.4, 503-512 ( 1994). | MR 1272386 | Zbl 0802.34089

[25] Levitan, B.M.: Inverse Sturm-Liouville problem, VSP, Zeist, 1987. | MR 933088 | Zbl 0749.34001

[26] Marchenko, V.A.: Sturm- Liouville operators and applications, Operator theory: Advances and Applications 22, Birkhäuser Verlag, Basel-Boston, Mass., 1986. | MR 897106 | Zbl 0592.34011

[27] Marchenko, V.A, Ostrovskii, I.V.: A characterization of the Hill's operator, Math. USSR Sbornik 26, 493-554 ( 1975). | Zbl 0343.34016

[28] Mckean, H.P., Van Moerbeke, P.: Spectrum of Hill equation, Invent Math., 30, 217-274 ( 1975). | MR 397076 | Zbl 0319.34024

[29] Mckean, H.P., Trubowitz E.: Hill's operators and hyperelliptic function theory in the presence of infinitely many branch points, Comm. on pure and appl.math, 29, 143-226 ( 1976). | MR 427731 | Zbl 0339.34024

[30] Minakshisundaram, S., Pleijel, A.: Some properties of the eigenfunctions of the Laplace operator on Riemannian manifold, Can. J. Math., 1, 242-256 ( 1949). | MR 31145 | Zbl 0041.42701

[31] Molchanov, S.A, Novitskii, M.V.: On spectral invariants of the Schrödinger operator on the torus, Uspekhi Math. Nauk, 38, no. 5 (233), 135-136 (Russian).

[32] Molchanov, S.A, Novitskii, M.V.: On spectral invariants of the Schrödinger operator on the torus, Dokl. Acad. Nauk SSSR, 286, n. 2, 287-291 ( 1986) (Russian); English translation: Sov. Math. Doklady, 33, 82-85 ( 1986). | MR 823385 | Zbl 0676.58049

[33] Molchanov, S.A, Novitskii, M.V.: Spectral invariants of the Schrödinger operator on the torus, Mathematical physics, functional analysis, Kiev, Naukova Dumka, 34-39 ( 1986) (Russian). | MR 906076 | Zbl 0676.58049

[34] Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of solitons, Nauka, Moskow, 1980; English transl., Plenum Press, New York, 1984. | MR 779467 | Zbl 0598.35002

[35] Novitskii, M.V. : On the recovery from a collection of polynomial conservation laws, of action variables for KdV equation in the class of almost periodic function, Math. SSSR Sbornik, 56, n.2, 417-428 ( 1985) (Russian, English translation). | Zbl 0615.35074

[36] Novitskii, M.V.: Equivalent system of spectral invariant of the Hill operator, Mathematical physics, functional analysis, Kiev, Naukova Dumka, 40-47 ( 1986) (Russian). | MR 906077 | Zbl 0672.47033

[37] Novitskii, M.V.: Spectral invariants of the Schrödinger operator on the torus with a coupling constant potential, Operators in Functional Spaces and Problems of Function Theory, Kiev, Naukova Dumka, 27-32 ( 1987) (Russian). | MR 946495 | Zbl 0697.35169

[38] Novitskii, M.V.: On complete description of the fundamental discrete series of the spectral invariants of the Hill operator, Theory of Functions, Functional Analysis and Applications, Kharkov, 56 ( 1991) 30-35 (Russian); English translation: Journal of Mathematical Sciences, 76, no.4, 2464-2468 ( 1995). | MR 1220893 | Zbl 0839.34032

[39] Novitskii, M.V.: On a complete description of the principal discrete series of spectral invariants of the Hills operator, Operator Theory: Advances and Applications, 46, Basel, Birkhauser Verlag, 115-117 ( 1990). | MR 1124657 | Zbl 0728.34090

[40] Novitskii, M.V.: Quasianalytic classes and isospectral Hill's operators, Advances in Soviet Mathematics, Spectral operator theory and related topics, 19, 27-39 ( 1994). | MR 1298441 | Zbl 0811.34072

[41] Novitskii, M.V.: Spectral invariants of the Schrödinger operator families, inverse problems and related functionals, Doctoral theses, Kharkov, 1997. (see Appendix on http::www-fourier.ujf-grenoble.fr/SEMINAIRES/STSG)

[42] Reed, M., Simon, B.: Methods of modern mathematical physics, IV Analysis of operators, New York-London, Academic Press, 1972. | MR 493421 | Zbl 0242.46001

[43] Skriganov, M.M.: The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Invent. Math., 80, no. l, 107-121 ( 1985). | MR 784531 | Zbl 0578.47003

[44] Sunada, T.: Trace formula for Hill's operators, Duke Mathematical Journal, 47, no.3, 529-546 ( 1980). | MR 587164 | Zbl 0522.34006

[45] Titchmarsh, E.C.: Eigenfunction expansions associated with second-order differential equation II, Clarendon Press, Oxford, 1958. | MR 19765 | Zbl 0097.27601

[46] Trubowitz, E.: The inverse problem with periodic potential, Commun.on pure and appl. math., 30, 321-337 ( 1977). | MR 430403 | Zbl 0403.34022

[47] Veliev, O.: Asymptotic formulas for the eigenvalues of the periodic Schrödinger operator, and the Bethe-Sommerfeld conjecture (Russian), Funktsional. Anal, i Pril., 21, no.2, 1-15 ( 1987). | MR 902289 | Zbl 0638.47049