Structure quasi-conforme et dimension conforme d'après P. Pansu, M. Gromov et M. Bourdon
Séminaire de théorie spectrale et géométrie, Volume 13 (1994-1995), pp. 23-36.
@article{TSG_1994-1995__13__23_0,
     author = {Champetier, Christophe},
     title = {Structure quasi-conforme et dimension conforme d'apr\`es {P.} {Pansu,} {M.} {Gromov} et {M.} {Bourdon}},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {23--36},
     publisher = {Institut Fourier},
     volume = {13},
     year = {1994-1995},
     zbl = {0906.30020},
     mrnumber = {1715954},
     language = {fr},
     url = {http://www.numdam.org/item/TSG_1994-1995__13__23_0/}
}
TY  - JOUR
AU  - Champetier, Christophe
TI  - Structure quasi-conforme et dimension conforme d'après P. Pansu, M. Gromov et M. Bourdon
JO  - Séminaire de théorie spectrale et géométrie
PY  - 1994-1995
DA  - 1994-1995///
SP  - 23
EP  - 36
VL  - 13
PB  - Institut Fourier
UR  - http://www.numdam.org/item/TSG_1994-1995__13__23_0/
UR  - https://zbmath.org/?q=an%3A0906.30020
UR  - https://www.ams.org/mathscinet-getitem?mr=1715954
LA  - fr
ID  - TSG_1994-1995__13__23_0
ER  - 
%0 Journal Article
%A Champetier, Christophe
%T Structure quasi-conforme et dimension conforme d'après P. Pansu, M. Gromov et M. Bourdon
%J Séminaire de théorie spectrale et géométrie
%D 1994-1995
%P 23-36
%V 13
%I Institut Fourier
%G fr
%F TSG_1994-1995__13__23_0
Champetier, Christophe. Structure quasi-conforme et dimension conforme d'après P. Pansu, M. Gromov et M. Bourdon. Séminaire de théorie spectrale et géométrie, Volume 13 (1994-1995), pp. 23-36. http://www.numdam.org/item/TSG_1994-1995__13__23_0/

[1] Pansu P. _ Dimension conforme et sphère à l'infini des variétés à courbure négative, Ann. Acad. Sc. Fennicae, Ser. A 14 ( 1989), 177-212. | MR | Zbl

[2] Gromov M. _ Asymptotic invariants of infinite groups, Lond. Math. Soc. Lecture Notes 182, Cambridge, 1993. | MR

[3] Bourdon M. _ Au bord de certains polyèdres hyperboliques, Ann. de l'Institut Fourier 45 ( 1995), 119-141. | Numdam | MR | Zbl

[4] Liouville J. _ Extension au cas des 3 dimensions de la question du tracé géographique, Application de l'analyse à la géométrie, G. Monge, Paris ( 1850), 609-616.

[5] Nevanunna R. _ On differentiable mappings, Analytic fonctions, ed. L. Ahlfors et al., Princeton University Press ( 1960), 3-9. | MR | Zbl

[6] Hartman P. _ On isometries and on a theorem of Liouville, Math. Z. 69 ( 1958), 202-210. | MR | Zbl

[7] Mostow D. _ Strong rigidity of locally symmetrie spaces, Annals of Math. Studies, Princeton University Press, 1973. | MR | Zbl

[8] Ahlfors L. _ On quasiconformal mappings, J. Analyse Math. 3 ( 1954), 1-58. | MR | Zbl

[9] Lehto O., Virtanen K.I. _ Quasiconformal mappingin the plane, Springer-Verlag, Berlin, 1973. | MR | Zbl

[10] Väisäla I. _ Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math. 229, 1971.

[11] Väisäla J. _ On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. A. 1298 ( 1961), 1-36. | MR | Zbl

[12] Pansu P. _ Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 ( 1989), 1-60. | MR | Zbl

[13] Gromov M., Pansu P. _ Rigidity of lattices, dans Geometrie Topology : recent developments, Lecture Notes in Math. 1504, Springer Verlag, Berlin, 1991. | MR | Zbl

[14] Heinonen J., Koskela P. _ Definitions of quasiconformality, Inv. Math. 120 ( 1995), 61-79. | MR | Zbl

[15] Mostow D. _ Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 ( 1968), 53-104. | Numdam | MR | Zbl

[16] Mori A. _ On quasiconformality and pseudo-analyticity, Trans. Am. Math. Soc. 84 ( 1957), 56-77. | MR | Zbl

[17] Gehring F.W. _ Rings and quasiconformal mappings in space, Trans. Am. Math. Soc. 103 ( 1962), 353-393. | MR | Zbl

[18] Paulin F. _ Un groupe hyperbolique est déterminé par son bord, à paraître dans J. of Lon. Math. Soc, 1995. | MR | Zbl

[19] Eberlein P., O'Neill B. _ Visibility manifolds, Pacific j. of Math. 46 ( 1973), 45-109. | Zbl

[20] Coornaert M., Papadopoulos A. _ Symbolic dynamics and hyperbolic groups, Lecture Notes in Math. 1539, Springer-Verlag, Berlin, 1993. | Zbl

[21] Bourdon M. _ Action quasi-convexe d'un groupe hyperbolique, Thèse de doctorat, Paris-Sud, 1993.

[22] Gromov M. _ Hyperbolic groups, in Essays in group theory, MSRI publ. 8, Springer ( 1987), 75-263. | Zbl

[23] GHYS E., DE LA HARPE P. eds. _ Sur les groupes hyperboliques d'après M. Gromov, Progress in Math. 83, Birkhäuser, 1990. | Zbl

[24] Gromov M. _ Lectures on manifolds of nonpositive curvature, Ballmann W., Gromov M., Schroeder V. eds., Progress in Math. 61, Birkhäuser, 1985. | MR | Zbl

[25] Gehring E., Palka B. _ Quasiconformally homogeneous domaines, J. Analyse Math. 30 ( 1976), 172-199. | MR | Zbl

[26] Sullivan D. _ On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in Riemann surfaces and related topics, proceedings of the 1978 Stong Brook conference, I. Kaa et B. Maskit ed.t Ann. of Math. Studies 97, Princeton University Press ( 1981), 465-496. | MR | Zbl

[27] Tukia P. _ On two dimensional quasiconformal groups, Ann. Acad. Sci. Fenn., Ser.A. 5 ( 1980), 73-78. | MR | Zbl

[28] Lehto O. _ Quasiconformal homeomorphisms and Beltrami equations, in Discrete groups and automorphic functions, W. J. Harveyed., Academie Press, 1977,121-142. | MR

[29] Tukia P. _ A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn., Ser. A 6 ( 1981), 149-160. | MR | Zbl

[30] Martin G. _ Discrete quasiconformal groups that are not quasiconformal conjugates of Möbius groups, Ann. Acad. Sci. Fenn., Ser. All ( 1986), 179-202. | MR | Zbl

[31] Gromov. _ Infinite groups as geometrie objects, Proceedings of the International Congress of Mathe-maticians, Varsovia ( 1983), 385-392. | MR | Zbl

[32] Ballman W., Brin M. _ Polygonal complexes and combinatorial group theory, Geom. Dedicata 50 ( 1994), 165-191. | MR | Zbl

[33] Benakli N. _ Polyèdres hyperboliques, passage du local au global, Thèse de doctorat, Paris-Sud, 1992.

[34] Haglund F. _ Polyèdres de Gromov, Thèse de doctorat, Lyon 1, 1992. | MR

[35] Paulin F. _ de la géométrie et la dynamique des groupes discrets, Thèse d'habilitation, Lyon, 1995.