@article{TSG_1994-1995__13__123_0, author = {Cherix, Pierre-Alain}, title = {Generic result for the existence of a free semi-group}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {123--133}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {13}, year = {1994-1995}, mrnumber = {1715961}, zbl = {0925.20070}, language = {en}, url = {http://www.numdam.org/item/TSG_1994-1995__13__123_0/} }
TY - JOUR AU - Cherix, Pierre-Alain TI - Generic result for the existence of a free semi-group JO - Séminaire de théorie spectrale et géométrie PY - 1994-1995 SP - 123 EP - 133 VL - 13 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/item/TSG_1994-1995__13__123_0/ LA - en ID - TSG_1994-1995__13__123_0 ER -
Cherix, Pierre-Alain. Generic result for the existence of a free semi-group. Séminaire de théorie spectrale et géométrie, Volume 13 (1994-1995), pp. 123-133. http://www.numdam.org/item/TSG_1994-1995__13__123_0/
[1] Cocroissance des groupes à petite simplification. Bull London Math. Soc., 25: 438-444, 1993. | MR | Zbl
.[2] Propriétés statistiques des groupes de présentation finie. to appear in Adv. in Maths. | MR | Zbl
.[3] Introduction à la petite simplification.
.[4] On spectra of simple random walks on one-relator groups (with an appendix of p. jolissaint). to appear in Pacific }. of math. | MR | Zbl
and .[5] E. GHYS and P. de la HARPE eds. Sur les groupes hyperboliques d'après M. Gromov. Number 83 in Progress in Maths. Birkhaüser, 1990. | MR | Zbl
[6] Hyperbolic groups. "Essays in Group Theory", ed. S.M. Gersten, M.S.R.I. Publ, 8:75-263, 1987. | MR | Zbl
[7] On the spectrum of the sum of generators for a finitely generated group. Israël J.of Maths., 81:65-96, 1993. | MR | Zbl
, , and .[8] On the spectrum of the sum of generators for a finitely generated group ii. Colloquium Math., 65:87-102, 1993. | MR | Zbl
, , and .[9] Combinatorial group theory. Number 89 in Ergebnisse der Math. Springer, 1977. | MR | Zbl
and[10] Alomost every group is hyperbolic. International j . of Algebra and Computation, 2:1-17, 1992. | MR | Zbl
.