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CHAMBÉRY-GRENOBLE

1990-1991 (103-109)

THE FILLING RADIUS 0F HOMOGENEOUS MANIFOLDS

par Mikhail KATZ

ABSTRACT. — A closed Riemannian manifold V imbeds isometrically in the Banach space L°°(V).
Hère x £V goes to dx G L°°, where dx(y) = dist(x, y) for ail y € V. The détermination of the homotopy
type of the £>neighborhoods Ue V of V C L°° allows one to compute a Riemannian invariant called the
filling radius of V (see [1]). Of particular interest is the first change in homotopy type as e > 0 increases.
Suppose V = G/H is a homogeneous space. The gênerai conjecture for the new homotopy lype X of Ue V
af ter the first change is as follows. Therc is a subgroup K C G such that

X CV*(G/K),

where * dénotes the topological join. This conjecture is verified in the case of the circle and the complex
projective space. Thus in the case of the circle V = S1 , one has G = SO(2\ H = {1}, K = Z3, and
A' = S1 * S1 = S3 . In the case of V = C P " , the quotient G/K can be described geometrically as the set of
equilateral 4-point sets inscribed in the projective lines CPl C C P n , and X is a proper subset of the join for
n ^ 2. One conjectures a certain geometrie condition on the homogeneous V, under which one can always
specify such an X. The condition is statcd in terms of an équivalence relation ~ , defined in [4], among the
points of a set Y C V (under a certain diameter restriction). The condition is that each équivalence class
a C Y of *v may be replaced by a connected set containing a, without increasing the diameter of Y.

1. The isosystolic inequality

In 1949, C. Loewner found a kind of an opposite isoperimetric inequality for

the 2-torus : {length of shortest non-contractible loop} ^ ^/-4\/Area, for an arbitrary

metric on T2. The case of equality is satisfied by the flat equilateral torus.

Consider the family of flat rectangular metrics on T2 with area 1.

Then one of the sides may become long, but the other side would have to become
shon for the area to be 1. Thus the shortest side is always bounded from above by a
fixed constant.

Loewner's proof used conformai techniques and intégral geometry, and is tailored
to the 2-dimensional case. Pu proved a similar resuit for RP 2 in 1952.

M. Berger introduced the notion of the fc-systol of an n-dimensional Riemannian
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manifold (Vn , g) in 1972. The first in the family, 1-systol or simply systol, is the length
of the shortest noncontractible loop in V\ denoted sys(gf). Berger asked, what is the
smallest value of a constant C(V)9 possibly depending on the topological type of V\
such that the so-called isosystolic inequality is satisfied for ail metrics g on V :

Example. — The manifold V = S1 x S2 does not satisfy the isosystolic inequality
with any fini te constant C(V) : product metrics of a fixed volume allow arbitrarily large
S1 -factor, whose length is the systol. Thus there is no upper bound on the systol. The
problem is the simply connected factor S2.

Gromov [1] proved the isosystolic inequality for essential manifolds in 1983. A
manifold V is called essential if there exists a map ƒ : V —• K(TT, 1) from V to an
Eilenberg-Maclane space such that the image of the fundamental homology class of V
is nonzero : f+([V]) ^ 0, where ƒ„ : Hn(V) —> Hn(K(w, 1)) is the induced map on
top-dimensional homology of V.

Gromov introduced a new Riemannian invariant called the Filling Radius and
denoted Fill Rad(V), and proved that sys(K) < 6Fill Rad(V) for essential manifolds,
and that Fill Rad(V) ^ Cnvol(l /)1 / n for ail manifolds, where Cn is a universal
constant depending only on dimension. The combination of the two inequalities gives
the isosystolic inequality.

The idea of the filling radius can be illustrated by a simple closed curve C C R2

in the plane. In this case, Fill Rad(C C R2) = rf where r is the radius of the biggest
circle in the interior of the closed curve.

Consider the tubular e-neighborhoods of C C R2. As e increases, the tubular
neighborhoods eat up more and more of the interior of C, until the last point of the
interior disappears, and then the curve C can be shrunk to a point in its e-neighborhood.
At this final moment, e = r, the radius of the biggest inscribed circle.

2. The Kuratowski imbedding

To define the filling radius of an abstract Riemannian manifold, we need to imbed
it isometrically as a metric space in a linear space. To proceed further, we need to
point out that the unit circle is imbedded isometrically in the place as a Riemannian
manifold, but it is not imbedded isometrically as a metric space. Indeed, the intrinsic
distance between two opposite points of the circle is T, and the ambient distance is 2.
On the other hand, if we imbed the circle in the 2-sphere as the equator, we obtain an
imbedding which is isometric in the strong sensé that we need.

C. Kuratowski in 1935 defined an isometric imbedding of a metric space (V, distv)
in the Banach space L°°(V) of bounded functions on V with the sup-norm || ||. Let
x € V. We define a function dx e L°° by setting for ail y € V\ dx(y) = distv (a:, y).
Then the Kuratowski imbedding is defined by V —> L°°, x »-+ dx.
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Dénote by Ur(V) C L°° the tubular r-neighborhood of V C L°°. Then

Fill Rad(V) := inf {r > 0 : tr([V]) = 0} ,

where ir; Hn(V) —> Hn(UrV) is induced by the inclusion V C UrV.

The choice of the coefficients is homology does not affect the proof of the isosys-
tolic inequality, so long as V has a nonzero fundamental class. We will write Fill Rad(V")
to dénote the filling radius defined using integer coefficients, and Fill Rad(V, Q), using
rational coefficients.

The calculation of the filling radius of two-point homogeneous spaces, or the rank
one symmetrie spaces, was initiated by me in 1983 and will be the topic of the rest of
this talk. I showed [2] that Fill Rad(Sn,0can) = \ arccos(-^y), or half the spherical
diameter of the regular (n+1) simplex inscribed in Sn. Also Fill Rad(RPn, 0can) = T / 6
regardless of dimension.

The next step is the calculation of the filling radius of the complex projective
space with the Fubini-Study metric, CPn. The complex projective space is of course
not essential, but the techniques used in the calculation of its filling radius can also be
used to compute the filling radius of certain lens spaces, which are essential.

3. The unit speed cone

The calculation of the filling radius breaks up into two parts : upper bounds
and lower bounds. The key construction used for all upper bounds is the unit speed
déformation in L°°. Given two functions f, g G L°°, we deform ƒ to g as follows. We
let the value of ƒ at x G V go to g(x) with unit speed and stop upon reaching it. In
symbols,

i ( ) if fix) * 9(X)
a t)(x) i
9, «(*) - | min (/(a:) + ̂  g i z y otherwise %

Given a function f e L°°, the family US(dxJ,y), for all x G V and t > 0,
defines a cone C(V, f) C L°° on V with vertex ƒ G L°°.

We now describe how to choose a particularly good cone and obtain an es-
timate for the filling radius. Given a subset Y c V, we let d = diam(V)
and e = maxx€v dist(x, Y). Set r = jmax(rf,e). We define f y G L°° by
fy(x) = distv(x, Y) + r.

LEMMA. — For every set Y c V9 we have the following.

(a) the unit speed cone C(V, fy) lies in Ür(V);

(b) if we use a linear interval joining dx with f y in the définition of the cone,
then the cone may not belong to Ur(V).

COROLLARY. — Fill Rad(V) ^ r.
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Proof — The fundamental class of V goes to 0 when V is included in thc cône.

Application. — Let V = Sn. Let y C Sn be the set of vertices of the
regular inscribed (n + l)-simplex. Then the lemma gives the correct upper bound for
Fill Rad(Sn).

Let V = RPn. Let Y C RP n be a bail of radius n/6. We obtain the filling radius
of R P n .

4. The diameter Morse f unction

To compute the filling radius of complex projective space, we need to go
beyond the cône construction, and actually détermine the homotopy type of tubular
neighborhoods of CPn in the Kuratowski imbedding. We détermine this homotopy
type using a kind of Morse theory.

To illustrate the main idea, consider the case of the circle V = S1. Dénote by
Sl/Zs the set of equilateral triangles y inscribed in S1. Hère by an equilateral triangle
we mean the set of vertices of such a triangle. Then Sl/Z$ is homeomorphic to the
circle, but we would like to distinguish the two circles. Note that the topolological join
of S1 and Sl/Z$ is homeomorphic to the 3-sphere : S1 * (Sl/Zi) ~ S3.

Then the set {US{dxJy,i)}y where x G S\ Y € Sl/Z^ i > 0 imbeds the
topological join S3 into Ur(S

}) C L°°, where r = 1 length (S1).

LEMMA.

(a) The homotopy type ofUr(S
}) C L°° is S1 for r < \ length (S1);

(b) The homotopy type of Ur(S
1 )C L°° is 5 3 for I length (Sl)<r<\ length (S1 ).

Remark. — Thus a tubular neighborhood of a circle is homotopic to the 3-sphere.
Our difficulty in visualizing such an imbedding stems from our Euclidean intuition.

Proof. — Proof is by Morse theory. The Morse functional in question is the
diameter functional.

DÉFINITION. — Dénote by 2V the set of closed subsets of V. Typically one
imposes an implicit uniform upper bound on the number of points in a set Y 6 2 V ,
which is large enough to accomodate ail subséquent constructions. Then 2V is a metric
space with respect to the Hausdorff distance among sets.

The diameter functional 6 : 2V —> R+ associâtes to each Y c V\ its diameter
maxXjy€ydistv(a;,y).

A set y c V is a local minimum of 6 if no perturbation of Y (with respect to the
Hausdorff distance) increases its diameter. One can also define a more gênerai critical
point of 69 but we will not enter into this.

The first nontrivial minimum of 6 on 2 5 is the equilateral triangle. This is the
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reason for the appearance of the circle S1 jZ% in the expression for the homotopy type
of UrS\

At this point one could ask two questions.

QUESTION 1. — One is interested in the homotopy types of certain neighbo-
rhoods in the function space L°°(V). How do the critical points of 6 on another space,
2 V , come into play?

QUESTION 2. — If I only talk about local minima of 6, how can Morse theory
yield nontrivial homotopy types?

The answers to both questions are related. In fact, the space of subsets 2V is used
to model only parts of the function space L°° ; the rest is done using the Mayer-Vietoris
homology exact séquence.

The relation between the space of subsets and the function space has already
appeared in passing from Y C V lo fy G L°°(V), defined by fy(x) = distv(XjY) + r.
To go from ƒ to Y\ we roughly take the set of points where ƒ achieves its minimum.

I would like to illustrate this connection further by showing how one passes from
a discontinuous family of sets to a continuous family of functions. This can be done
conveniently in the context of a construction using the eut locus.

5. The eut locus

Let V be a Riemannian manifold with a chosen point p £ V. Let Q C V be the
eut locus of p. Let q e Q, and dénote by T(p, q) C V the union of all minimizing
geodesics joining p with q.

LEMMA . — Let Y C V be a closed subset, and let Yq = Y n T(p, q). Letr>0.
Assume thaï for all q €Q, the following two conditions are satisfied :

(i) diam(Yg) < 2v .

(ii) distvOr, Yq) < 2v for all x e T(p, q).

Then HU Rad(V) < r.

Remark. — This is a refinement of the basic estimate with the unit speed cone,
which I discussed earlier.

Proof. — The main point of the proof is to pass from the (typically discontinuous)
family of sets {Yq}$ q e Q in 2V to a continuous family of functions {fq} in L°°, defined
as follows :

ƒ,(ar) = MQ (dist(x, Yq>) + ^disKg',?)) + r .

Here N > 0 is a large parameter.
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As an application, we obtain very explicit upper bounds for the integer filling
radius of complex projective spaces and lens spaces.

6. Flags, joins, and complex projective space

In the case of the rational filling radius, the situation is much simpler.

THEOREM. — Fill Rad(CPn,Q) = ±arccos(-^).

Proof. — We replace the cône construction by that of a "partial join". Dénote
by S(CPn) the unit tangent sphère bundle of CPn. We will make use of a somewhat
nonstandard fibration : SO(3) —> S(CPn) —• Gr2(Cn+1). U t TT : S(CPn) —>
Gr2(Cn+1). Hère we view the Grassmanian of 2-planes in Cn+1 as the set of complex
projective lines in CP" in homogeneous coordinates. The projection ic can be understood
as the composition of the fiberwise projectivization S(CPn) —• P(TCPn)9 and the
"forgetful" map between flag manifolds F\i2jn+\ —> ^2,n+i = Gr2(Cn+1), by noting
that P(TCPn) = F1)2)fî+1. The fiber of ir is 50(3).

Let X c CPn * S(CPn) be the subset of the join of CPn and S(CPn) consisting
of intervais joining x € CPn and v G S(CPn) such that x lies in the unique complex
projective line tangent to v :

X = {x * v C CPn * S(CPn)\x e ir(u)} .
To each v G S(ÇPn) we associate a set Yv C n(v) which is the set of vertices of a
certain regular tetrahedron inscribed in n(v). This is the tetrahedron such that one of its
vertices is the basepoint of v, and such that v is tangent to one of the three (spherical)
edges emanating from the venex.

Let ai = àiamcpi(Yv) = arccosC-^). Let ƒ„ = dist(x,Yv) + ^a\. This gives
us a map S(CPn) — . Ur

Ql/2CPn. We map the partial join X to TfQl/2CPn by
us{dxjv,t), x e cp n , v e S(CPn), t > o.

To prove the theorem-(or at least its upper bound), it suffices to verify that the
inclusion of CPn in X sends the fundamental homology class of CPn to 0. This turns
out to be equivalent to fact that the kernel of the differential djn~2|° in the Serre spectral
séquence of the fibration SO(3) —> S(CPn) —> Gr2(Cn+1) is an oblique line with
respect to the standard basis for the homology of the Grassmannian (in other words, it
does not lie in a certain coordinate hyperplane).

Schubert • ktr(dln'2fi)

( l .n + 1)

Schuben
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I would like to state a resuit about the situation in the case of integer coefficients.

Let À» be the f-th critical value of 6 : 2 c p n —• R+. Then Ai = a\9 but the value
of À2 > Ai is unknown.

THEOREM. — Fill Rad(CP3) ^ \\2.

COROLLARY. — The space CPn can be retracted to a point in its closed ot\/2-
neighborhood in L°°(CPn) for n = 1,2 but notfor n = 3.
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