Solving Diophantine Problems Modulo Every Prime
Séminaire de théorie des nombres de Grenoble, Volume 1  (1971-1972), p. 9-19
@article{STNG_1971-1972__1__9_0,
     author = {Gauthier, F.},
     title = {Solving Diophantine Problems Modulo Every Prime},
     journal = {S\'eminaire de th\'eorie des nombres de Grenoble},
     publisher = {Institut des Math\'ematiques Pures - Universit\'e Scientifique et M\'edicale de Grenoble},
     volume = {1},
     year = {1971-1972},
     pages = {9-19},
     language = {fr},
     url = {http://www.numdam.org/item/STNG_1971-1972__1__9_0}
}
Gauthier, F. Solving Diophantine Problems Modulo Every Prime. Séminaire de théorie des nombres de Grenoble, Volume 1 (1971-1972) , pp. 9-19. http://www.numdam.org/item/STNG_1971-1972__1__9_0/

[1] - J. Ax - Solving diophantine problems modulo every prime (Ann. of Math. vol. 85, 1967, p. 161-171). | MR 209224 | Zbl 0239.10032

[2] - J.R. Joly - Théorème d'Artin-Tchebotareff (Séminaire de Théorie des Nombres, Grenoble, 20.1.71).

[3] - S. Lang et A. Weil - Number of points of varietes in finite fields. (Amer. J. Math. 76, 1954, p. 819-827). | MR 65218 | Zbl 0058.27202

[4] - S. Lang - Introduction to Algebraic Geometry. | Zbl 0247.14001

[5] - J.P. Serre - Cours d'Arithmétique. | Zbl 0225.12002

[6] - G. Shimura and Y. Taniyama - Complex multiplication of abelian varietes and its applications to Number Theory. | Zbl 0112.03502

[7] - G. Shimura - Reduction of algebraic varietes with respect to a discrete valuation of the basic field (Amer. J. Math. 77, 1955, p. 134-176). | MR 66687 | Zbl 0065.36701

[8] - B.L. Van Der Waerden - Einführung in die Algebraische Geometrie. | JFM 65.1393.01 | Zbl 0061.32303

[9] - B.L. Van Der Waerden - Modern Algebra (vol. II). | Zbl 0033.10102