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9 Decembre 1970 

Seminaire de Theorie des Nombres 
Annee 1970-1971 - expose n° 10 

WARING'S PROBLEM FOR FIELDS 

by 

W. J. ELLISON 

THE ORIGINAL WARING'S PROBLEM. Given a positive integer k does 

there exist an integer g(k) such that every positive integer is a sum of at 

most g(k) k*^ powers of positive integers ? 

This was proposed by Waring in 1770 and answered by Hilbert in 

1909. The proof of the theorem is quite difficult. (See the paper in the Jan. 

issue of the American Math. Monthly if you wish to read about the problem 

ad nauseum). 

It is natural to pose the same problem about other common rings, 

say for example, the ring of integers in an algebraic number field. The 

combined work of Siegel, Birch and Ramanujam show that given a number 

field K and a positive integer k then if we denote by A(k) the subring of 

the ring of integers of K which can be written as a sum of k ^ powers of 

integers there exists a constant g(k) such that every integer in A(k) is a 
, th , . m l . , sum of at most g(k) k powers of integers. There is also a very nice paper 

by Joly in a recent issue of Acta Arithmetica. 

The proof of this theorem is quite complicated. 
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Instead of asking Waring's problem about rings we ask it about fields. 

The following definition is useful. 

DEFINITION. Let K be a field. The Waring's theorem of exposent k holds 

if every totally positive a 6 K can be written in the form 

a = L a. , 
i=l 1 

where a € K for 1 £ i ^ n ̂  g(K, k) < « and 

(1) The â  are all totally positive. 

(2) g(K,k) depends only on K and k . 

In some circumstances it is convenient to drop condition (l) ; then we say that 

the weak Waring theorem of exponent k holds. 

THEOREM 1. Let K be a field with the following two properties : 

(I) Every totally positive a € K can be written as a sum of at most s 

squares in K . 

(II) Let k be a fixed positive integer and suppose that for each totally posi­ 

tive a € K there exists (3 6 K , depending on a , which satisfies 

for all orderings < of K . 

Then, (a) The weak Waring theorem of exponent k holds in K 

(b) If the g corresponding to each a € K can always be chosen to  

be totally positive, then Waring1 s theorem of exponent k holds 

in_ K . 

COROLLARY. Waring's theorem holds for all exponents in Q . 

Proof. - Every positive rational is a sum of at most 4 squares of rationals, 

so s = 4 . 

If k is a positive integer and a is a positive rational then we can 

always find a positive rational g such that 
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4 k ^ 
ITik tt < P < a • 

Thus g(Q,k) < oo for each positive k . 

We shall give some more corollaries later. 

The proof of the theorem is elementary (i. e. simple), we shall eed 

the following lemma due to Hilberto 

LEMMA. (Hilbert) - For every pair of positive integers k and s there  

are : an integer 
w (2k+3) . . . (2k+2+s) M = ;— ; s : 

positive rational numbers X. for 0 ^ i ^M and integers a.. , 0^ i ^ s ,  I ij 
0 £ j ^ M such that we have an identity 

, 2 2,k+l M , , ,2k+2 
(x + . . .+x) = 2 X.(a . x + . . . + a . x ) 

o s j = o J O J ° S J s 

Proof. - See Hilbert or the Amer. Math. Monthly. 

Proof of theorem 1 - Differentiate the above identity twice with respect to x^ 

(1) (x 2+... +x 2 ) k + 2 k x 2 ( x 2 + . . . + x 2 ) k - 1 = (2k+l)EX.a .(a .x +...+a 0x ) 2 k . 

o s o v o s ] O] O] o sj s 
2 

If a^€ K and 1 -a^ > for all orderings of K then by hypothesis (I) we have 
1-a2 = b 2 +. . . + b 2 . , b.. e K . 1 li si Jl 

Substitute x = a. , x. = b.„ in (l) and obtain 
o i J Ji 

2 M 2 2k 
(2) l+2ka. = (2k+l) 2 X. a . (a . a. +. . .+cc . b .) 

1 j=o J °J °J 1 SJ SJ 
If a € K and 0 ^ a < 1 for all orderings of K , then by hypothesis (I) we 
h a v e 2 2 

a = a, + . . . + a 1 s 
and ^ 

0 <: a. < 1 for 1 £ i £ s , i. e 1 -a. > 0 for 1 <: i <: s I I 
substitute the â  into (2) and add the resulting set of s equations to obtain 

s M 2 2k 
(3) s+2ka = E 2 X. a . (2k+l) (a .a. + . . .+a . b .) 

i=i j=o 3 0 3 O J 1 S J 8 1 



10-04 

Let A = 1. c. m. of the denominators of the X. , so that A. X. = A. € Z . k J K J J 

7 2k n 2k 
(4) sA + 2kA, a = £2 A. a . (2k+l)(a .a. + . . .+a . b .) = E C-v ' k k j j J oj oj I sj si i = 1 i 

M 2 

where C € K and n * (2k+l). s . 2 A. a . . 
i i=0 J °J 

A k (s+2k) 

Now if a€K is totally positive then so is . Hence by hypo­

thesis (II) there exists a g € K such that 
„ A (S+2k) A (s+2k) 

for all orderings < of K . 
a 0 - s A k 

Put a = — , then 0 ^ a < 1 and substuting into (4) we have 
k 

ap = S C-
i=l 1 

n k 
a = 2 (~±-f . 

i=l ° 
The two assertions of the theorem now follow. 

The upper bound for g(K,k) is given by 
M ? 

g(K,k) ^ (2k+l) s 2 A. a . . 
j=0 3 ° } 

This upper bound depends very weakly on the field K ; it is a function 

of k and s only. 

If we are interested in numerical estimates for g(K,k) then we can 

improve this upper bound. We look at (4) again 

M s 2v 
(4') s A l T 2k A. a = S S A . a .(2k+l)(a . a. + 0 . . + oc . b .) 

k k j=o i=l J ° J O J 1 s j s l 

= 2 T) 2 k , r k , where T].€K , r„6 Q + , 
i=l 1 1 1 1 

and m £ g(Q,k)(M+l) . 

It is trivial that g(Q, k) ^ G(k) and one can obtain good upper estimates 

for G(k) by analytic methods. 
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COROLLARY 2. If_ K is an algebraic number field then Waring1 s theorem  

is true for all exponents. 

Proof. - It is a classical theorem that that every totally positive algebraic 

number is a sum of at most 4 squares. Thus, hypothesis (I) is satisfied 

with s = 4 . 

If K is a totally imaginary number field, then every element of K 

is totally positive and we can satisfy hypothesis (II) with g = 1 . Suppose now 

that K is not totally imaginary. Denote the real conjugate fields by 

K

( 1 » K

( r » . w e need the following lemma 

LEMMA. Let e>0 and n T] ^ e given real numbers, then there  , 1 r Q  

exists a g 6 K such that 

I ^ - Ti I < e for 1£ i<; r . 

Proof. - Let K = Q(0) so that = Q(e^) for l^ i^ r . Let f(x) be the 

polynomial of degree (r-I) with real coefficients which takes the values 

ri.+ l e at x ^ e ' 1 ' for 1 £ i <: r . 'i 2 
Let g(x) be a polynomial with rational coefficients and degree (r-1) 

such that , , /x 

|f(x)-g(x)|<^e at x= 6 U ) , . . . , 6 U ) . 

Put g = g(0) , then g ^ = g(B^) for r and 

j g ^ - r\ \ < e for 1 £ i £ r . 

If a € K and a is totally positive, then CĈ  > 0 for l£i<:r . To 

satisfy hypothesis (II) of theorem 1 we must find a g €K such that 

0 < { ^ a ( i ) } < P ( i ) < { a ( i V / k for i * i * r . 

The existence of such a p follows from the lemma by taking 

1 f / 2 (i)vl/k , , (i)>l/k, , n. = 2 { g ^ . a w ) + (av ') } for r 

and e small enough. 
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COROLLARY 2. If_ K is a non-real field of characteristic 0 (i. e. -1 is  

a sum of squares in K ) then Waring's theorem holds for every exponent. 

2 2 
Proof. - Let -1 = â  + . . . + a

t » then a € K can be written as 

a = ( ^ ) 2 - . . ^ ) 2 , 

a + 1 2 t a (a-1) 2 

* i=l ^ 

Thus, hypothesis (l) holds with s ^ t+1 and hypothesis (II) is 

trivially satisfied. 

We now look at a slightly different problem. We used hypothesis (l) 

quite a lot in the proof of theorem 1, but hypothesis (II) is only used at one 

point. The proof of theorem 1 can be used to prove the following theorem. 

THEOREM 1'. Let K be a field with the following two properties 

(a) Every totally positive a g K can be written as a sum of at most s 

squares in K . 

If we are given a positive integer k and a totally positive a€K such  

that there exists a g 6 K , depending on a , such that 

0 < _ J _ ( . s ± 2 ^ < g k < ^ ± 2 k 
s+2k a ' p a 

for all orderings of K , then a can be written in the form 

v k 

a = 2 a. , 
i=l 1 

where aa € K and n £ g(s,k) < <» . 

We can apply theorem 1' to fields which do not have property (II) 

of theorem 1, for example function fields of the type K = K^(X) , where K^SK^ 

is a real field. 

Suppose for example we take K = R(Xj, . . . , X ) , R = real numbers. 

It is a well kncwn theorem of Pfister thct every totally positive element of 

R(Xj, . . . , X^) is a sum of at most 2 n squares, so a ̂  2 n . 
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If one is given a totally positive element of R(X^, . . . , X ) then it 

seems to be rather difficult to check that the second condition of theorem 1' 

is satisfied (By the way the condition is sufficient but not necessary). One 

can prove the following lemma which is sometimes useful in helping to verify 

the existence of a g with the required properties. 

LEMMA. Let f(X) be a strictly positive definite, everywhere defined, con­ 

tinuous real valued function on R n . Suppose that there exist real numbers 

a, b, 6 and a rational function h(X) £ ( X j , . . , , X n ) such that 
2 2 

(0) h(X) bas no real poles in the region defined bv X n +. . 0 +X £c+l 
f(X) 1 n 

(1) 0 < a < — < b < c o 
h k (X) 

(2) 0 < 6 £ f(X) 
for all X 6 R n which satisfy X.+. . . + X 2> c , where c > 1 is a fixed real  L- i n  

number. 

Then, given e > 0 there exists a function y (X) € K . ( X X ) 
I n 

such that f(X) 
0 <(a-e) <— <(b+e) for all X 6 R n . 

Yk(X) 
The proof is straightforward and extremely boring. 

In the special case n = 1 we can prove much more. 

THEOREM 2. Let f(X) € R(X) be positive definite ; a necessary and suf-
th 

ficient condition that f(X) can be written as a sum of k powers of positive 

.definite functions in K.(X) is that f(X) is of the form 

f ( x , = r ) - < x V k r i - § m • 

where ; r. $ Z ; G(X) and H(X) are strictly definite polynomials in 

R[X] of degrees 2l^k and 2 ^ k . 
th 

Moreover if f(X) is a sum of k powers of positive definite func­ 

tions in R(X) then f(X) can be written as a sum of at most g(k) such 
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functions. An upper bound for g(k) is . ^(^k+3)(2k+4) - 2(2k+2)(2k+3) „ 

The proof is straightforward. 

SOME PROBLEMS 

(a) If Waring !s problem holds for the field K , then what is the best 

possible value for g(K,k) ? Even for K = Q this seems to be hard0 The 

known results are g(Q, 2) = 4 , g(Q, 3) = 3 , g(Q, 4) = 15 . 

(b) Let K be a real field. If given integers k and n , does there 
th 

exist a constant C(K,n, k) such that if f(X) is a. sum of k powers in 
th K(X , . . „ , X ) then f(X) can be written as a sum of at most C(K, n, k) k l n 

powers ? [ This is known to be true when K = R , k - 2 , n arbit„ and when 

K = R , n = 1 , k arbit. ] 

(c) If f(X) € K[X] is a sum of k t h powers in K(X) , then can f(X) 
th 

be written as a sum of k powers in K[X] ? 

(d) Give a "nice" description of the elements of K(X . 0 . „ ,X ) which 
th n 

can be expressed a sum of k powers in K(X^, . „ „ , X ) . [ The case k = 2 

and K a real field is Hilbert !s 17^ problemc Artin showed that f(X) is a 

positive definite function on K in the case when K is a subfield of the real 

numbers with precisely one ordering]. 

W. J 0 ELLISON 
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