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1/2 
ON SUMS OF SQUARES IN Q 1 (X) ETC 

by 

W. J. ELLISON 

Quantitative solutions to problems associated with Hilbert's 

problem on sums of squares of rational functions seem to be rather hard to 

find. Prof. Cassels has just described a theorem which shows that there are 

some positive definite functions in R(X, Y) which are not the sum of three 

squares in R(X, Y) and a theorem of Hilbert. Landau shows that every posi

tive definite function in R(X, Y) is a sum of at most 4 squares in R(X, Y) . 

Thus 4 is best possible. 

To-day I shall describe a similar problem which is unsolved. 

1/2 
DEFINITION. Let Q denote the real quadratic closure of the rationals 

l /2 l /2 i. e. Q is the smallest subfield of R such that if a€Q and a is total-r ^ ~1/2 

ly positive thai Va € Q 

LEMMA. (Hilbert) - Let K be a field with the following two properties 
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(I) If_ a 6 K and a is totally positive, then a is a sum of at mQst 4 

squares in K . 

(II) For any totally imaginary extension L _of K , -1 is a sum of at most  

two squares in L . 

Then every sum of squares in K(X) can be written as a sum of two  

squares in K(X) . 

Proof. - Denote a sum of squares in K(X) by f(X) . Then we can assume 

that f(X) 6 K [ X ] and f(X) is irreducible over K . The justification of these 

two assertions is a follows. 

& First, if ^ is a sum of squares in K(X) , then so is pq and if 
q 

pq is a sum of squares in K(X) then so is p/q . 
Secondly if the polynomials p^, . . . , p^ are each a sum of squares in 

K(X) then their product is a sum of squares in K(X) . 

Thirdly we must show that if f(X) 6K[X] is a sum of squares in 

K(X) then each monic irreducible factor which divides f(X) to an odd power 

is a sum of squares in K(X) . 

Without loss of generality we can suppose that f(X) is manic and 

square free. Let p(X) be a monic irreducible factor of f(X) . In order to 

show that p(X) is a sum of squares in K(X) it will suffice to show that for 

each ordering of K , p(X) is a sum of squares in R(X) , where R is a real 

closure of K which extend the order on K „ For if p(X) is a sum of squares 

m R(X) it implies p(X) is a sum of squares in each real closure of K(X) 

which extends the given ordering on K . This in turn implies that p(X) is 

positive in all orderings of K(X) and by a theorem of Artin this implies that 

p(X) is a sum of squares in K(X) . 

We now show that p(X) is a sum of squares in R(X) , for each of 

the real closed fields mentioned above. It is trivial that g(X) £ R[X] is a 

sum of two squares in R[X] if and only if g(a) ^ a for all a 6 R . Now 

suppose that p(a) ^ 0 for some a 6 R , since p is monic it follows that 

p(b) > 0 for some b 6 R . This implies that p(X) has a root a in R . 

Hence f(a) = 0 and this implies a is a double root of f(X) which contradicts 
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the fact that f(X) has no square factors. Thus p(a) > 0 for all a €R and so 

is a sum of two squares in R(X) . 

We prove the lemma by induction on df , the degree of f(X) . When 

df = 0 the conclusion of the lemma is just hypothesis (I). 

As an inductive hypothesis we assume the conclusion of the lemma 

for all polynomials of degree less than f(X) which can be written as a sum 

of squares in K(X) . 

So we suppose df ^ 2 and that f(X) can be written 

(1) f(X) = hf+ . . . + h 2 . 
1 m 

By a theorem of Cassels we can assume h. € K[X] for l ^ i ^ m . Consider 
I 

the field L = K[ X] / {f(X)} , the above hypothe sis on f(X) implies that -1 

is a sum of squares in L . Thus L is non-real and so by hypothesis (II) 

we have ^ £ 
-1 = a, + a, , a. € L . 1 2 I 

Rewriting the above in terms of polynomials we have 

(2) f(X) . h(X) = 1 + a 2 (X) + a2

2(X) 

where h(X) , a^(X) € K[X] and each of degree less than f(X) . Equation 

(2) => h(X) can be written as a sum of squares in K(X) and so by our induc

tion hypothesis h(X) can be written as a sum of 4 squares 

l + a 2 (X) + a 2 ( X ) 
(3) f(x) = —~ -~— = g.z(x) + . . . + gZ(X) „ 

b z(x)+„„„+b z(x) 

This completes the induction step and proves the lemma. 

1/2 
THEOREM 1. If_ f(X) is a totally positive element of Q 7 (X) then f(X) 

1/2 
can be written as a sum of at most 4 squares in Q (X) . 

?5PP-'-- We just have to check that the two hypotheses of the lemma are satis

fied. Excercise. 
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How many squares do we really need ? 

First of all, every totally definite quadratic polynomial is a sum of 
l/2 

two squares in Q [X] , for we can write the polynomial in the form 
l/2 

f(X) = (X-a) 2+ p and f(X) totally positive => g is totally positive => J$€Q 
2 i 2 

=> £(X) = (X-a) +(p2) . 
LEMMA 1. There are totally positive quartic polynomials which are not the 

1/2 
sum of two squares in Q [X] . 

Proof. - Suppose that 

4 2 2 2 2 2 
x l a x + b x I c ^ a j X + ^ x + Yj) + (c^x + g x + y) , 

then 2 2 
l = a 1 + a 2 ; O ^ a ^ + a , ^ ; c = Y f + Y 2

2 ; 

a = 2(a1Y1+a2Y2) + P1

2+32

2 ; b ^ V ^ Y , -

We can write these as a set of vector equations in namely 

1 = a. a , 0 = a . b ; a = 2a.c+b.b ; b = b „ c ; c = c. c . 

By making an orthogonal substitution we can assume that Q = ( l , 0) and the 

equations become 

0 = P l . a = 2Y1 +P2

2 , b = 32Y2 ; c = Y l

2 + Y 2

2 . 

On eliminating g ^ a n d w e obtain 

(a-2 Y l )(c-Yf) = b 2 . 
1/2 

This equation must have at least one root in Q if f(X) can be written as 
1/2 

a sum of two squares in Q [X] . Thus to find ar example of a quartic poly-
1/2 

nomial which is totally positive and not the sum of two squares in Q [X] 

we must pick a, b, c 6 Q such that 
4 2 l /2 

(a) x + a x + b x + c is a sum of squares in Q ' (X) 
3 2 2 

(b) The cubic equation 2t - at - 2ct + (ac -b ) = 0 has no roots 

m in Q 1 

For example : 
v 4 , . ^ 2 ^ . ! /X 2+X+l x

2 , , X 2 - X , , 1 ,2 
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the cubic is 
3 2 2t - 2t + 1 , 

1/2 
which is irreducible over Q and so over Q 

LEMMA 2. Every totally positive quartic polynomial is a sum of 3 squares 

in Q 1 / 2 [ X ] . 

Proof. Exercise 
Thus, lemma 2 shows that the technique used by Cassels-Ellison-

Pfister to prove that 4 was the correct solution when K = R(X, Y) cannot 
be used. 

1/2 
PROBLEM : Can every sum of squares in Q (X) be written as a sum of 

1/2 
at most 3 squares in Q (X) ? 

I have no idea how to solve this problem. 

W. J. ELLISON 
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