W. J. ElLison
 On Sums of Squares in $Q^{\frac{1}{2}}(X)$ etc

Séminaire de théorie des nombres de Bordeaux (1970-1971), exp. no 7, p. 1-5
<http://www.numdam.org/item?id=STNB_1970-1971 \qquad A7_0>
© Université Bordeaux 1, 1970-1971, tous droits réservés.
L'accès aux archives du séminaire de théorie des nombres de Bordeaux implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ON SUMS OF SQUARES IN $Q^{1 / 2}(\mathrm{X})$ ETC
by

W. J. ELLISON

-: -: -: -

Quantitative solutions to problems associated with Hilbert's problem on sums of squares of rational functions seem to be rather hard to find. Prof. Cassels has just described a theorem which shows that there are some positive definite functions in $\mathbb{R}(X, Y)$ which are not the sum of three squares in $\mathbb{R}(X, Y)$ and a theorem of Hilbert. Landau shows that every positive definite function in $\mathbb{R}(X, Y)$ is a sum of at most 4 squares in $\mathbb{R}(X, Y)$. Thus 4 is best possible.

To-day I shall describe a similar problem which is unsolved.

DEFINITION. Let $Q^{1 / 2}$ denote the real quadratic closure of the rationals i. e. $Q^{1 / 2}$ is the smallest subfield of \mathbb{R} such that if $\alpha \in Q^{1 / 2}$ and α is totally positive then $\sqrt{\alpha} \in Q^{1 / 2}$.

LEMMA. (Hilbert) - Let K be a field with the following two properties
$9-02$
(I) If $\alpha \in K$ and α is totally positive, then α is a sum of at mast 4 squares in K.
(II) For any totally imaginary extension L of $K,-1$ is a sum of at most two squares in L 。

Then every sum of squares in $K(X)$ can be written as a sum of two squares in $K(X)$.

Proof. - Denote a sum of squares in $K(X)$ by $f(X)$. Then we can assume that $f(X) \in K[X]$ and $f(X)$ is irreducible over K. The justification of these two assertions is a follows.
\& First, if $\frac{p}{q}$ is a sum of squares in $K(X)$, then so is $p q$ and if pq is a sum of squares in $K(X)$ then so is p / q.

Secondly if the polynomials p_{1}, \ldots, p_{t} are each a sum of squares in $K(X)$ then their product is a sum of squares in $K(X)$.

Thirdly we must show that if $f(X) \in K[X]$ is a sum of squares in $K(X)$ then each monic irreducible factor which divides $f(X)$ to an odd power is a sum of squares in $K(X)$ 。

Without loss of generality we can suppose that $f(X)$ is monic and square free. Let $p(X)$ be a monic irreducible factor of $f(X)$. In order to show that $p(X)$ is a sum of squares in $K(X)$ it will suffice to show that for each ordering of $K, p(X)$ is a sum of squares in $R(X)$, where R is a real closure of K which extend the order on K. For if $p(X)$ is a sum of squares in $R(X)$ it implies $p(X)$ is a sum of squares in each real closure of $K(X)$ which extends the given ordering on K. This in turn implies that $p(X)$ is positive in all orderings of $K(X)$ and by a theorem of Artin this implies that $\mathrm{p}(\mathrm{X})$ is a sum of squares in $\mathrm{K}(\mathrm{X})$.

We now show that $p(X)$ is a sum of squares in $R(X)$, for each of the real closed fields mentioned above. It is trivial that $g(X) \in R[X]$ is a sum of two squares in $R[X]$ if and only if $g(a) \geq a$ for all $a \in R$. Now suppose that $p(a) \leq 0$ for some $a \in R$, since p is monic it follows that $p(b) \geq 0$ for some $b \in R$. This implies that $p(X)$ has a root α in R. Hence $f(\alpha)=0$ and this implies α is a double root of $f(X)$ which contradicts
the fact that $f(X)$ has no square factors. Thus $p(a)>0$ for all $a \in R$ and so is a sum of two squares in $R(X)$.

We prove the lemma by induction on ∂f, the degree of $f(X)$. When $\partial \mathrm{f}=0$ the conclusion of the lemma is just hypothesis (I).

As an inductive hypothesis we assume the conclusion of the lemma for all polynomials of degree less than $f(X)$ which can be written as a sum of squares in $K(X)$ 。

So we suppose $\partial \mathrm{f} \geq 2$ and that $f(X)$ can be written
(1) $f(X)=h_{1}^{2}+\ldots+h_{m}^{2}$.

By a theorem of Cassels we can assume $h_{i} \in K[X]$ for $l \leq i \leq m$. Consider the field $L=K[X] /\{f(X)\}$, the above hypothesis on $f(X)$ implies that -1 is a sum of squares in L. Thus L is non $-r e a l$ and so by hypothesis (II) we have

$$
-1=a_{1}^{2}+a_{2}^{2} \quad, \quad a_{i} \in L
$$

Rewriting the above in terms of polynomials we have

$$
\text { (2) } \quad f(X) \cdot h(X)=1+a_{1}^{2}(X)+a_{2}^{2}(X)
$$

where $h(X), a_{i}(X) \in K[X]$ and each of degree less than $f(X)$. Equation $(2) \Rightarrow h(X)$ can be written as a sum of squares in $K(X)$ and so by our induction hypothesis $h(X)$ can be written as a sum of 4 squares

$$
\begin{equation*}
f(X)=\frac{1+a_{1}^{2}(X)+a_{2}^{2}(X)}{b_{1}^{2}(X)+\ldots+b_{4}^{2}(X)}=g_{1}^{2}(X)+\ldots+g_{4}^{2}(X) \tag{3}
\end{equation*}
$$

This completes the induction step and proves the lemma.

THEOREM 1. If $f(X)$ is a totally positive element of $Q^{1 / 2}(X)$ then $f(X)$
can be written as a sum of at most 4 squares in $Q^{1 / 2}(X)$.

Proof. - We just have to check that the two hypotheses of the lemma are satisfied. Excercise.

How many squares do we really need ?

First of all, every totally definite quadratic polynomial is a sum of two squares in $Q^{1 / 2}[X]$, for we can write the polynomial in the form $f(X)=(X-\alpha)^{2}+\beta$ and $f(X)$ totally positive $\Rightarrow \beta$ is totally positive $\Rightarrow \sqrt{\beta} \in Q^{1 / 2}$ $\Rightarrow f(X)=(X-\alpha)^{2}+\left(\beta^{\frac{1}{2}}\right)^{2}$.

LEMMA 1. There are totally positive quartic polynomials which are not the sum of two squares in $Q^{1 / 2}[X]$.

Proof. - Suppose that

$$
x^{4}+a x^{2}+b x+c=\left(\alpha_{1} x^{2}+\beta_{1} x+\gamma_{1}\right)^{2}+\left(\alpha_{2} x^{2}+\beta_{2} x+\gamma_{2}\right)^{2}
$$

then

$$
\begin{aligned}
& 1=\alpha_{1}^{2}+\alpha_{2}^{2} ; \quad 0=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2} ; \quad c=\gamma_{1}^{2}+\gamma_{2}^{2} ; \\
& a=2\left(\alpha_{1} \gamma_{1}+\alpha_{2} \gamma_{2}\right)+\beta_{1}^{2}+\beta_{2}^{2} ; \quad b=\beta_{1} \gamma_{1}+\beta_{2} \gamma_{2} .
\end{aligned}
$$

We can write these as a set of vector equations in $Q^{\frac{7}{2}}$ namely

$$
1=a \cdot a, \quad 0=a \cdot b ; a=2 a . c+b \cdot b ; b=b \cdot c ; c=c \cdot c .
$$

By making an orthogonal substitution we can assume that $a=(1,0)$ and the equations become

$$
0=\beta_{1}, \quad a=2 \gamma_{1}+\beta_{2}^{2}, \quad b=\beta_{2} \gamma_{2} ; c=\gamma_{1}^{2}+\gamma_{2}^{2} .
$$

On eliminating β_{2} and γ_{2} we obtain

$$
\left(a-2 \gamma_{1}\right)\left(c-\gamma_{1}^{2}\right)=b^{2} .
$$

This equation must have at least one root in $Q^{1 / 2}$ if $f(X)$ can be written as a sum of two squares in $Q^{1 / 2}[X]$. Thus to find ar example of a quartic polynomial which is totally positive and not the sum of two squares in $Q^{1 / 2}$ [X] we must pick $a, b, c \in Q$ such that
(a) $\mathrm{x}^{4}+\mathrm{a} \mathrm{x}^{2}+\mathrm{b} x+c$ is a sum of squares in $\mathrm{Q}^{1 / 2}(\mathrm{X})$
(b) The cubic equation $2 t^{3}-a t^{2}-2 c t+\left(a c-b^{2}\right)=0$ has no roots in in $Q^{1 / 2}$.

For example :

$$
x^{4}+2 x^{2}+x+1=\left(\frac{x^{2}+x+1}{\sqrt{2}}\right)^{2}+\left(\frac{x^{2}-x}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}\right)^{2}
$$

the cubic is

$$
2 t^{3}-2 t^{2}+1
$$

which is irreducible over Q and so over $Q^{1 / 2}$.

LEMMA 2. Every totally positive quartic polynomial is a sum of 3 squares in $Q^{1 / 2}[\mathrm{X}]$.
Proof. Exercise
Thus, lemma 2 shows that the technique used by Cassels-EllisonPfister to prove that 4 was the correct solution when $K=R(X, Y)$ cannot be used.

PROBLEM : Can every sum of squares in $Q^{1 / 2}(X)$ be written as a sum of at most 3 squares in $Q^{1 / 2}(\mathrm{X})$?

I have no idea how to solve this problem.
-:-:-:-
W. J. ELLISON
U.E.R. de Mathématiques
et d' Informatique
Université de Bordeaux 1
351, cours de la Libération
33 - TALENCE

