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Séminaire de Théorie des Nombres 
Année 1970-1971 - exposé n° 12 

ON A THEOREM OF S. SIVASANKARANARAYANA PILLAI 

by 

W. J. ELLISON 

§. I. - One of the main results proved in Pillai [6] is a follows. 

THEOREM. _If_ m, n, a, b are given positive integers, 6 a given positive  

real number and a m x - b / 0 for any positive integral x and y , then 

| a m X - b n y | > m ( l - 6 ) x  

for all integral x > X q (& , m , n, a , b) and all integral y . 

G. H. Hardy in his book Ramanujan, (Cambridge, 1940), discusses 

Pillars work on pages 78-81 and applies the above theorem in the special 

case a = b = l , m = 2 , n = 3 to prove a result about integral lattice points 

inside a right angled triangle. Probelms of a type similar to Pillai1 s theorem 

also occur in the collection of J. E. Littlewood [5] . 

Pillai's proof of the above theorem is based on the Thue siegel theo

rem and this means that the constant x is non-effective. By this I mean 
o 7 

that given explicit integers a , b*,m , n and an explicit real number 6 then 

one cannot determine an explicit value of X q from Pillaifs proof. The basic 
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logic underlying the proof being thot the non-existence of such an implies 

a contradiction, hence x exists. 
o 

Using recent work of Baker it is now possible to write down an ex

plicit expression for x (&, a , b , m , n). This is done in corollary 1 to theo-
o 

rem 1 . The value of X q which we deduce may seem to be rather large, but 

in any numerical case this initial estimate for X q can be drastically reduced. 

An example of this phenomenon is provided by theorem 2, where we look at 

the special case of Pillai!s theorem which was considered by Hardy. In theo

rem 3 we provide a partial answer to problem 1 of Littlewood [5] . 

§. II. - We shall need the following two lemmas. The first is a triviality ; 

the second is due to Baker [2]. 

LEMMA 1. Let A , B , C be given positive integers and A a given  

positive real number. Suppose that x , y are integers with absolute value  

at most H and such that 

0 < | A X B y - C | * e" A H . 
AH 
2 -1 

If e ^ 2C then we can deduce the following inequality : 
AH 

0 < |x log A + y log B - log C| ̂  e 2 

Proof. Let A X B^- C = ID, then since juuj < C we have 

x log A + y log B = log(C+ou) = log C + log (1 
and so 

|x log A + y log B - log C| = |log(l + -^) | . 
AH 

Because juu| ^ e and since by hypothesis e 2 s 2C we can conclude 
that AH 

I — I * - 2 

1 C 1 2 
Thus, we certainly have 
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AH AH 

1 1 0 8 ( 1 + ^ 1 = 1 S ^ ( | ) N | / E H n V ' " i E " 2 * 

n=l n=l 2 - e 2 

and the lemma is proved. 

LEMMA 2. Let <Xj,...,a be given algebraic numbers of degree and height 
at most d and A respectively, where d ̂  4 , A ̂  4 and let 6 be a given 

positive real number less than or equal to 1 , furthermore let 

log a , , ... , log a denote the principal values of the logarithms of a.,..., a . 1 n 1 1 a 1 n 
If there exist rational integers b b of absolute value at most H such 

-—Q i n . 
that 

0 < I b log CL+ ... + b log a | < e " 6 H 

1 ° 1 n ° n then 

H* (4 n 2 . 6" 1. d 2 n l o g A ) ( 2 n + 1 ) 2 . 

THEOREM 1. Given positive integers a , b , c , m , n , let A = max {4 , a , 

b , m , n } and let A be a real number which satisfies 0< A< min {2, log n , 

log m} . All solutions, in positive integers x and y of the inequality 

(1) 0 < |am X - bn y | £ C 

satisfy 

max(x, y) * max{ ( ^ . ^ V * ; }?*{c/A ; . } . " A (logn)-A (logm)-AJ 

Proof. Let (x, y) be a solution to (l) and suppose that x^y . We write the 

inequality (l) as 

/o\ l a -x yi c -x r , log (c/b) i , -Ax 
(2) 'b " m n ' b m ~ exp {-x(logm — ' — u ] £ e 

provided that 
(3) x log (c/b) 

(log m) - A Ax 

If inequality (3) holds and if, in addition, we have e ^ 2b/a , then by lern-

ma 1 we can deduce the inequality 
Ax 

(4) 0 < | log(a/b) + x log m - y log n| £ e 
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We now apply lemma 2, with n = 3 , d = 4 , 6 = A / 2 , a 1 = a/b , - m , a 3 = n 

to obtain 

(5) ^ ( i l f ^ ? \ 

Thus, if (x, y) is a solution to (l) with x£ y then either 

(logm)-A A A 

If (x, y) is a solution to (l) with y £ x then we obtain the analagous upper 

bounds for y . 

COROLLARY 1. Jf_ m ^ n and 6 is a given positive real number then for 

all x ^ x̂  (6, a , b , m , n) we have 

i x , yi (l -&)x | x , yi 
|am -bn | £ m or_ |am -bn | = 0 . 

2 3 1 logA 4 9 

A possible choice for x is x = ( T- 5—) , where A = min{2 , 6 log m , 
0 — o A 

6 log n } . 

2 3 1 log A 4 9 

Proof. If (x, y) is a pair of positive integers whith x > ( —) , then 
if | am X - bn^| = c and c / 0 we must have x ^ j-°fi(c/k) ^ since m^n . 

x -Ax (l-6)x (logm)-A 
This implies that c £ bm e £ m 

COROLLARY 2. Denote by N(c) the number of solutions of the inequality 

0 < | m X - n y | £ c , then 

f l V T / x (log m)(log n) ^ ^ , lim sup {N(c)->—5 — L } £ 1 . 
C -> oo (log c) 

Proof. Given e > 0 we choose A so that 

f(l-T-^ )(l-7^—)}" 1^l + e and 0< A< min {2, log m , log n} . 
L logm logn J L & to J 

For all sufficiently large c we have 

x ^ l Q S c , a n d ^ log c 

(logm)-A y (log n) - A 
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The maximum possible number of solutions of the inequality is 

((log m)-A)((log n)-A) 

and so 

/1 log m log n (log c) * * 
The result now follows. 

The point of the above observation is that the second main theorem 

in Pillai [6] shows that N(c) is asymptotic to r: °̂ —r~ as c -» oo . 
(log m)(log n) 

Thus, in this case the apparently very coude upper bound for the number of 

solutions to a diophantine problem which can be derived from a Baker type 

estimate for the largest solution actually gives the main term in an asymptotic 

formula for the number of solutions. 

We now look at the special case of Pillai1 s theorem which was 

considered by Hardy. 

THEOREM 3. Let S be the following set of integers 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 19, 27} . 
x 

Then we have J2X- 3^| > 2 X e ^ for all pairs of positive integers (x, y) 

with x £ S . 

Proof. Since a = b = 1 we can write inequality (4) as 
_Ax 

|x log 2 - y log 3| < e 2 , 
2 1 8 log 2 2 5 

and as before we use lemma 2 to deduce that max (x, y) (̂ ) 
If we take A = l/lO this upper bound is less than 10^ . 

LEMMA 3. The only solutions, in positive integers x and y to the 

inequality x 
20 

0 < |x log 2 - y log 3| < e 

with x satisfying 0 S x s 10 l6° are : (x, y) = (1,0) , (1,1), (2, 1), (2, 2) , 

(3,2), (4,2), (4,3), (5,3), (6,4), (7,4), (8,5), (9,6), (10,6), (11,7), (12,8), 
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(13,8), (14,9), (15,9), (16,10), (17,11), (18,11), (19,12), (21,13), (22,14), 

(24,15), (25,16), (27,17), (30,19), (32,20), (33,21), (35,22), (38,24), (46,29), 

(57,36), (65,41), (84,53). 

Proof. We use a well known result from the theory of continued fractions. 

LEMMA 4. (a) If_ 8 is a real number and p/q is a rational approximation  

to 0 which satisfies 

then p/q is a convergent in the continued fraction expansion of 0 . 

(b) _If_ Pn/q is a convergent in the continued fraction expan 

sion of 0 and if a +̂ is the corresponding partial quotient then 

— — — ^ - J H ^ - T -
(a , + 2) q n a , q v n+1 ' Hn n+1 Hn 

We put 0 = (log 2) / (log 3) and consider the inequality 

X X 
"20 "20 

, d x 1 xlog3 x 
x 

e" 2 0 1 If x ^ 300 then — < —T" and so if (x, y) is a solution to x 2 2x x 
|x log 2 - y log 3| < e ^ 

with x ^ 300 then y/x occurs as a partial convergent in the continued frac

tion expansion of 0 , say p / q . Moreover, if a , is the corresponding 
n n n+1 

partial quotient the above lemma implies that 
q /20 n 

a . > — - 2 , n+1 q 
n 
x 
10 

e 
since q = x £ 300 and — is an increasing function of x for x £ 10 we 

n X 
15 X 

must have a ^ rTT* - 2 > 100 . We now comute the continued fraction ex-n+1 300 
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pansion of 0 until the exceed 10 and observe that there 

are no partial quotients which exceed 700 . Hence there are no solutions to 
x 

|x log 2 - y log 3| < e ^ with x in the range 300 £x£ 10*^ It is a simple 

matter to check the range 0 ̂ x£ 300 and obtain the solutions stated in the 

lemma. 

We can now conclude the proof of theorem 3. Let (x, y) be a pair 

of positive integers and defince c by c =• J2X-3^| . 
x 

X 10 lo£ C 
Suppose that 2 e > c i. e. x > 7: 5r—-—: , then as in (3) of theorem 1 

(log 2) - 0. 1 v ' 
we can deduce that 

x 
0 < | 1-2" X . 3 y | * e " 1 0 , 

X 20 and if x ^ 20 we have e > 2 and we infer that . x 
2 0 

0 < |x log 2 - y log 3| < e 
Hence x must have one of the values stated in lemma 3. On checking each 

of the pairs (x, y) mentioned in lemma 3 we find that the only values of x 

which lead to a value of c satisfying 

^ 9 x "10" 
c < 2 e 

are the members of X . This completes the proof of theorem 2 . 

Remarks (a) If x € S the corresponding least volues of c are as follows : 

|2-3| = 1, | 2 2 - 3 | = 1, | 2 3 - 3 2 | = 1 , | 2 4 - 3 2 | = 7 ; | 2 5 - 3 3 | = 5 , J2 6 -3 4 | = 17, 

| 2 ? - 3 4 | =47 ; | 2 8 - 3 5 j = 13, | 2 1 0 - 3 6 | = 295, 12 1 1 -3 7 1 = 139, J2 1 3 -3 8 | = 1631, 

| 2 1 4 - 3 9 | = 2299, | 2 l 6 - 3 l ° | = 6487, | 2 1 9 - 3 1 2 | = 7153, | 2 2 7 - 3 1 7 | = 5077565. 

The smallest value of the ration c/2 X occurs when x = 1 9 , y = 1 2 ; i t 

is 0. 0136 . . . 

(b) We actually computed the continued fraction of 0 until the 
550 

denominators of the partial convergents exceeded 10 . Thus one could 

take A anywhere in the range 10 ^ < A< 10 ^ and use the figures given in 

the appendix to prove a theorem analagous to theorem 2. Of course, the 

smaller one takes A tho larger the exceptional set S becomes. 
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(c) If one is given 6, a , b , m , n with |a b | -f 1 and one wishes to 

compute a precise value for X

Q(^» a , b , m , n) then it can always be done. 

For one possible method of reducing the large initial estimate for X q to a 

more reasonable value see [l] or [3]. 

§. III. - Pillai!s theorem suggests the following problem. Let a, b, m, n 

be given positive integers with (logjm) / (log n) irrational, then define the 

function uu(x) by 

uu(x) = min |am X-b n |̂ . 
y € Z + 

Find "simple" functions cp(x) and $(x) such that U)(x) ^ <P(x) for all inte

gral x > (a, b, m, n) and u)(x) ̂  $(x) for an infinity of integral values of 

x . 

Corollary 1 to theorem 1 tells us that if m ^ n then we can take 

Cp(x) = m"*̂  ^ for any fixed 6>0 . However, by using a theorem of Fel'dman 

we can give a much stronger result. 

THEOREM 3. Let a, b, m, n be given positive integers with m ̂  n and  

such that (log m) / (log n) is irrational. Then the folbwing two statements  

are true. 
x 3 /x 

(1) 0)(x) < am (n - 1) for an infinity of integral values of x . 
(2) There exist two effectively computable numbers K = K(a, b, m, n) 

x -K 
and x̂  = X

Q(K) such that uu(x) > m x for all integral x > x̂  . 

Proof. The first statement is a trivial consequence of Kronecker's theorem 
th 

as given in Hardy and Wright, Theory of Numbers, (4 edition), page 

For if (log m) /(log n) is irrational then there are an confinity of positive 

integers (x, y) such that 
| - x log m + y log n - log (a/b) | < ^ n . 

iir i a -x yi cm~ x . r , We can write ~ - m n = — m one of the two forms : b b 

j - x log m + y log n - log (a/b)| = |log (l ± — m X ) | . 
a 
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So we certainly have 

I, /, c -x, I 3 log m |log (1 ± - m )| < f 

for an infinity of pairs (x, y) . It now follows that 

x , 3/x . x,, ~3/xx c < a m (n -1) or c < a m (1 - n ) , 

-3 /x 3 /x 
for an infinity of pairs (x, y) , and since 1 -n < n - 1 we have the 

conclusion of statement (l) . 

In order to prove statement (2) we need a special case of the fol

lowing deep result of Fel'dman [4]. 

LEMMA 5. Let a, , . . . , a , 6 > . . . , 8 be given algebraic numbers in  1 m o m D ° 
the field K which is of degree n over Q , then 

lpQ + P 1 i oga 1 + . . . + 3 m l oga m l>exp{ - ( C l +c 2 log H)} , 

where H = maximum of the lengtho of 8 » • • • > 6  __a <~0 m 
/ 2 - 2 2,.6m -2m+l t r , _-,.12m -f4m-3 c = n (4 . n2[cQ+log hj) , 

c an absolute constant, 
0 

c - c /n , h = maximum of the heights of a ,» . . . , a 2 1 a 1 m 

I X VI X 
am -bn I = c^am 

then we have a stronger result than is claimed by statement (2) , so suppose 

that c < am . Then, as in the proof of lemma 1 it follows that 

|y log n - x log m - log (a/b)| < C . " ~ . 
X / X 

am 1-c/am 
By Fel'dman's result, with h = max {a, b, m, n}, H = max(x, y) we have /„31/ • , - NN 117 c = c = (4 (c + log h)) and 

1 Ld O 
exp{-(c o+ C l log H ) } < - £ ^ ( l - ~ m " X ) 1 

a m 
which implies that 

- c i m e c > a . . . 

a m x 
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. . . log (a!b) 
Slllce m < n 1t fol1ows that lf x> log (n/m) and y is chosen to minimise 

lamx - bnYI then yS x. Thus H = x and we can conc1ude that 

x 
am 

w(x) > c 
x Z 

-c 
1 

e 
1 

1 +-~-
x 

am 

if 
_1_o=g_a_-_1o-,g,,--b_ 

x> 
log n - log m 

To tidy this lower bound we choose 
x 

am 
-c 

e 1 

K> C z and find Xo (K) such that 
x 

C z 
x 

1 
1 +-~-

x 
am 

m 
for an > --

K 
x 
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