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1 Introduction

Stochastic integration in infinite dimensional spaces is a mature area. Several
important classes of stochastic integrals were introduced and studied in depth by
Kunita [12], Metivier and Pistone [15], Meyer [14], Métivier and Pellaumail [16],
Gyongi and Krylov [7], Grigelionis and Mikulevicius [5], Walsh [22], Korezlioglu
[9], Kunita [11], etc. Not surprisingly, the approaches to infinite dimensional
stochastic integration proposed in these works have some similarities but also
some distinct features. The latter are mainly related to the specifics of the spaces
and processes involved. For example, the integral with respect to a stochastic
flow (see Kunita [11], and also Gihman, Skorohod [4]) and the integrals with
respect to orthogonal martingale measures (see Gyongy, Krylov [7], [6], Walsh
[22]) seem to have very little in common. In fact, the relation between these two
integrals as well as others mentioned above is stronger than it might appear.
More specifically, it will be shown below that all these integrals and some others
are particular cases of one stochastic integral with respect to a locally square
integrable cylindrical martingale in a topological vector space.

Let E be a quasicomplete locally convex topological vector space with weakly
separable dual space E’, i.e. E is a locally convex topological vector space so that
all its bounded closed subsets are complete. Let be a predictable family
of symmetric non-negative linear forms from E’ into E and As be a predictable
increasing process. By a locally square integrable cylindrical martingale in E

*This paper was partially supported by ONR Grant N00014-91-J-1526
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(with covariance operator function Qs and quadratic variation ~t0 Qsd03BBs) we

understand a family of real valued locally square integrable martingales Mt ( y),
y E E’, such that 

B~(y)? = das.
Jo

The stochastic integral is constructed in three steps. To begin with, we define
an Ito integral for integrands from the set consisting of E’-valued pre-
dictable functions f s such that

10Qsfs,fs>E,E’d03BBs  ~ P-a.e.

(see Proposition 9). Below this integral is denoted f o fsdMs or It ( f ) . In our

approach, the set Sb of simple (elementary) functions consists of all finite linear
combinations ~~ f $ yk, y~ E E’, of real valued predictable functions so that

~i ~
/ L  ~0 P-a.e.
o k ,j = 1

The choice of the set of simple functions is almost the only nonstandard feature
of the first part of our construction.

Unfortunately, the above integral is not quite satisfactory in that the space
of integrands, (Q), is not complete. So the next important step is to find

a natural completion of this space. To address this problem we rely on the L.
Schwartz theory of reproducing kernels [21]. The results in [21] allow to construct
a family of Hilbert subspaces Hs C E naturally associated with the covariance

operator function Qs; below these spaces are referred to as covariance spaces.
The covariance space Hs is defined as the completion of Q$ E’ with respect to
the inner product

:_ y ~E, E’ (1)

Using these results we demonstrate (Proposition 10) that the closure of (Q)
is isometric to the space (Q) := (predictable E-valued g : :

,Jp  0~ P-a.s.}. 
, . ,° 

The third and final step of our construction is to extend the stochastic integral
from onto . To achieve this goal, we introduce a normalized
stochastic integral for E-valued integrands. We denote this integral fo g$ * dMs
or Loosely speaking, the integral is defined by the equality

Rt(g) = t0 gs * dMs := t0 gsd(Ms/Qs) . (2)

Of course, this "definition" is formal; it explains the origins of the term "normal-
ized" rather than defines the integral. However, if gs = Qsfs and f E 
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(2) can be made meaningful by setting

t0 gs * dMs := t0 Qsfsd(Ms/Qs) : = t0 fsdMs,
(see section 4.1 as well).

Since Qsfs E the idea now is to extend the Ito stochastic integral
t0 f s dM$ by extending the normalized integral f 4 dMs to all integrands
belonging to We prove that this is indeed possible (Proposition 11), and
for every g E is a local square integrable martingale such that

R(g)>t = t0|gs|2Hsd03BBs .

In addition, we show (Proposition 11) that the range of Ito stochastic integrals,
R(Z( f ), f E is a dense subset of the range of normalized stochastic

integrals, R(R.( f ), f E in the topology generated by uniform in t

convergence in probability.
The linkage between the normalized integral and other extensions of Ito

stochastic integral is considered in detail in Sections 3.3 and 4.1.
The normalized integrals arise naturally in many problems of stochastic anal-

ysis. Indeed, their utility is quite evident in the characterization of measures that
are absolutely continuous with respect to the measure generated by a given mar-
tingale. For example,consider the pair of I-dimensional processes:

{dXt = atdt + 03C3tdWt

dMt = 03C3tdWt
Then

dPX/dPM = as03C3-2sdMs - 1 2 Jo a2s03C3-2sds}
= 

where :_ ~.
In the forthcoming paper [19] we prove that all absolutely continuous shifts of
a local square integrable cylindrical martingale Mt introduced above are of the
form fo gsdaJ, g E and the corresponding Radon-Nikodym derivative is
given by ~dM, - ~ 

Another interesting example arises in the characterization of the stable sub-
spaces of local martingales. It is well known that this problem is of central

importance for the representation theorem in martingale problems (see e.g. [8]).
In Section 3 (Proposition 12) we prove that the stable space of a locally square
integrable continuous cylindrical martingale ~Mt(y’), y’ E E’? coincides with the
set of normalized integrals

L1(M) ={R(f) : E[(10 |fs|2Hsd03BBs)1/2]}  ~.

In Section 4 of the paper we discuss various particular cases of the normalized
integral. These include Hilbert-valued stochastic integrals, stochastic integrals
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with respect to orthogonal martingale measures, stochastic integrals with respect
to stochastic flows, etc.

In Section 5 we apply the same ideas for integration of vector valued functions
with respect to martingale measures.

Our construction obviously does not cover the more difficult case of Banach
space valued integrands with respect to one-dimensional Brownian motion where
the geometry of Banach space is involved (see [1], [2], etc.). Also, we leave aside
the complicated problem of the existence of the factorization Qsd03BBsx in the
most general case. In many particular cases this factorization is known. It was
established in [15], [14] in the Hilbert space setting, in [9] for nuclear space val-
ued square integrable martingales, in [22], [6] and [7] for orthogonal martingale
measures, etc. The stochastic integral for Banach space valued square integrable.
martingales constructed by Métivier-Pellaumail [16] is based on an a priori es-
timate of simple integrals. In the Appendix we show that this estimate actually
implies the existence of the factorization QdA.

2 Ito Stochastic Integrals

Suppose we have a probability space (S~, ~’, P) with the right-continuous filtra-
tion of 03C3-algebras IF = Let P(F) be the F-predictable 03C3-algebra. Let
E be a quasi-complete locally convex topological vector space, i.e. E is locally
convex topological vector space so that all its bounded closed subsets are com-
plete. Let E’ be its topological dual. Denote by (x, y) (~ E E’, y E E) the
canonical bilinear form. We suppose that there exists a countable weakly dense
subset of E’. Let ~C+(E) be the space of symmetric non-negative definite forms
Q from E’ to E, i.e:

_ (y~’ ~ ~y ) ~ (y >_ 0 y" E E’

Definition 1. We say that a family of real valued random processes Mt =
is a locally square integrable ’cylindrical martingale in E with

covariance operator function Qs and quadratic variation fo Qsd03BBs if for each

y‘ E E’ E P) and

Mt (y’ )Mt (y")-t0y’ ,Qs y"> d03BBs ~ Mloc (F, P), (3)

where Q : : [0,1] x 03A9 ~ ,C+(E) is a P(IF)-measurable function (i.e. y" E
E’, (y’, is and at is an increasing P(IF)-measurable
process.

Here and below Mloc (F, P) is the space of real-valued local (F, P)-martingales
and P) is the space of locally square integrable real valued (F, P)- mar-
tingales.

Our next step is to construct a P(F)-measurable family of Hilbert subspaces
of E generated by the covariance operator of the cylindrical martingale M.
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According to [21], for any K E ,C+(E), one can define an inner product in
by the formula (k’y‘~ h’yn)K = ~~~ Ky") Vy’, y’~ E E’.

The following statements hold true (see Appendix for the proofs).

Proposition 2. (See Proposition 10 in j,~l~). There exists a completion HK of
KE’ with respect to the inner product (., .)K such that HK C E and the natural
imbedding is continuous.

Corollary 3. (cf. Corollary to Proposition 7 in f~l~~. Let T be a countable
weakly dense subset of E’. Then KT is strongly dense in HK, i.e., HK is a

separable Hilbert space.

Denoting Hs = we can rewrite (3) as

Mt(y’)Mt(y") - t0(Qsy’,Qsy")Hs d03BBs ~Mloc(IF, P), (4)

Definition 4. We say that (Hs) = (HQ~) is the family of covariance spaces of
M.

Let L(Q) be the set of all vector fields f = fs = 1(5, v) such that f~ E Hs
and ( fs, are P(IF)-measurable for each y’ E E’. Denote = {f E
L(Q) : fo j f (H8 das  oo P-a.s.}= P).

Let T = {e i , ...} be a countable weakly dense subset of E’. We define a
sequence of E-valued P(F)-measurable functions:

e1s = {Qse’1/|Qse’1 |Hs, > if Qse’1 ~ 0
0, if Qse’1 = 0

ek+1s = {(Qse’k+1 - 03A3ki=1(Qse’ k+1 , eis) eis) /dk+1s , if dk+1s ~ 0 (5)0, if dk+1 = 00, if ds _ 0 ’

where ds+1= ~k 1 (Qsek+1, e$ It follows from the definition
of the sequence (es ) that for each n, there exists an E’-valued P(IF)-measurable
function e$ such that

- ~ (6)
According to Corollary 3, QsT is a dense subset of Hs, then (5) is the Hilbert-
Schmidt orthogonalization procedure. This yields that for each s, the vectors

(ej) form a basis in Hs . Thus we arrive at the following statement.

Corollary 5. Let f E L(Q). Then for each s, we have the expansion in HQ$ =
Hs

fs = > and |fs|2Hs = 03A3(fs,eks)2Hs, (7)
k k

In particular, this expansion implies that ~Ha is a predictable function.
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Remark 6. Assume that P-a.s. for each y e E’ , ,

10Qsy,y>d03BBs  ~.

Then it follows that P-a.s. for each y e E’, E E’*, where E’* is
the algebraic dual of E’. 

°

Remark 7. Assume that P-a.s. .) das E E for each y E E . ‘ Let f E
Then fQ fsd03BBs E E P-a.s. for each t.

Indeed, for each y E E’ , ,

|t0fs,y>d03BBs|~ (t0|fs|2Hsd03BBs)1/2(10Qsy,y>d03BBs)1/2
and the statement follows.

Remark 8. We remark that for a predictable increasing process At, t E [0, 1],
(we assume Ao = 0) the condition A1  oo P-a.s. is equivalent to the existence
of a sequence of stopping times (Tn) such that P(Tn  1) -~ 0, and EATn  o0

for each n (see Lemma 1.37 in [8]).
Now we can construct the Ito stochastic integral for the class (Q) of all

P(F)-measurable E’-valued functions f such that

10Qsfs ,fs~ d03BBs  ~ P-a.s.

We start with the set of simple functions Sb = {f e : f = n1 fs hk, f k
are P(F)-measurable bounded scalar functions, hk E E’, k = l, ... , n, ~~1}. .
For f = ~i f/ hk E Sb, we define the Ito integral by

Zt(f = / fsdMs = fs dMs(hk) .

o 1 a

We see immediately that the map f ~ Z( f ) defined on Sb (with values in
P)) is linear up to evanescence and for each f E sb,

(Z(f ))t - d~s . (8)
Jo

Proposition 9. The map f ~ Z( f ) defined on Sb has a further extension to
the set 2loc (Q) (still denoted f It(f) = f o such that:

1. Z( f ) E P) and (8) holds;
~. f ~ linear up to evanescence;
3. If fn, f E and fo (Qs ( fs - fs), f$ - --~ 0 in probability,

then 1 ~~J ) - Zs ( f ) ~ ~ 0 in probability, as n -~ oo.
Moreover, this extension is unique (up to evanescence).
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Proof. 1°. Firstly, we extend the Ito integral to

Let S = f E L2(Q) : f = n1 f/ hk , fk are real valued P(IF)-measurable func-
tions, hk E E’, k = 1,..., , r~, n > 1 }. Fix f s = ~p f s hk E S and define

Obviously gn E and by the Lebesgue dominated convergence theorem

E 10Qs(fs-gns),fs-gns>d03BBs~0, as n~ ~.

Now it follows from (8) that

E sup -~ 0, as n, oo .
t

Thus we can extend Z to S linearly so that for each f E ~, E P)
and (8) holds.

Now fix f E L2 (Q) Then Qaf" E and by Corollary 5 (see (7) )Qsfs =
. Let gNs = By the Lebesgue dominated

convergence theorem

E10|Qsfs-gNs|2Hsd03BBs~0 (9)

as oo. By the definition of and es (see (5), (6)) it follows that there
exists f N E S such that gN = Therefore we can write (9) as

E10|Qsfs-QsfNs|2Hsd03BBs=E10Qs(fs-fNs),fs-fNs>d03BBs~0, as N ~ ~.

Thus is a Cauchy sequence and we can find Z( f ) E P) such that
(8) holds and

t

Obviously this extension is linear (up to evanescence) and unique by the
Property 3.

2°. In order to extend Z to we apply the standard localization pro-
cedure. Fix f E then ’there exists a sequence of stopping times Tm t 1
such that E L’(Q) for each m and we can find Z( f ) E P)
such that = Zt (f 1{.~Tm}). Properties 1,2 of the extension are obvious.
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3°. Finally, we prove that property 3 holds for I(f), f E L2loc(Q). Let 10Qs ( f$ -
f $ ) , f s - ~ 0 in probability as n ~ ~. There exists a sequence ( Tn ) of
stopping times such that

En0Qs(fns -fs), fns - fs>d03BBs + P(n 1) ~ 0

as n ~ ~, and for each n E n0Qs fs, fs>d03BBs  oo. Thus E supt |It^n (f n) -
It^n(f)|2 ~ 0, as n ~ ~. Since P ( rn  1 ) ~ 0, we derive easily that

supt|It fn ) - Zt ( f ) | ~ 0 in probability as n ~ ~. Then the statement follows.

3 Normalized and Ito Stochastic Integrals

3.1 Normalized stochastic integrals

If fn E and 10 (Q$ ( f s - fms,), f m - fs ) das ~ 0 in probability as
n, m ~ oo, then there exists Zt E (IF, P) such that supt |It - It ( fn)| ~ 0 in
probability, as n ~ ~. In order to describe Zt we need to complete 

Let d = f E (Q) : 10Qsfs,fs> das = 0 P-a.s. and = 

For f E (Q) we denote f = f + C~ and define the distance of the convergence
in probability.

d(f , g) = E[10Qs(fs - gs), fs - gs>d03BB1/2s ^ 1].

Let U = f E (~) ~ f o ~fs ~H$ das = 0 P-a.s. , (Q) _

(Q)/O. For f E (Q) we denote f = f + O and define the distance
1

d(f~9) _ ~l ~ 1]~f~9 E 

It is easy to see that these definitions do not depend on the particular represen-
tative of the equivalence class and (Q) is a complete metric space.

Proposition 10. (see [18,19]) The . s Qsfs ’ an isometric imbed-

ding of into L2loc(Q) and is a dense subset of L2loc(Q), i.e.,
is the completion o f .

Proo f. For each y E E’, y) = 0 if and only if Q$ y = 0 and the first part of
the statement follows from the definitions.

Let f s E (~), f N = ~N ( , e J ) e J . Then by Corollary 5
i

/ ~ f s - f ~ ~H~ das --~ 0, , as N -~ oo, P -a.s. ( 10)
0
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From the definition of (es ) (see (5~, (6)) it follows that there exists a sequence

fN E such that fNs = We can rewrite (10) as

10 |fs- QsfNs | 2Hsd03BBs ~ 0, as N~ ~, P-a.s.

Now the second part of the statement follows.

Let G be the map f s Q$ f s from L o° (Q) to If f , g E and

f - g E C~, we have T ( f ) = T (g) Thus according to Propositions 9 and 10, we
can define the stochastic integral on (Q)) C (Q) by

Rt(g) = Rt(g)=t0 gs*dMs=t0fsdMs=It(f)=It(), (11)

where gs = Qs f $ fs E (Q) Obviously (R(g))t = t0|gs|2Hs d03BBs .

Proposition 11. (see ~18,19~ )The map f ~ R( f ) defined on has

a unique extension to the set still denoted f  Rt(f ) = f o f s * dMs, ,
with these properties:

1. R(f) = t0 |fs|2Hs d03BBs;
~. ~Z( f ) is linear up to evanescence;

3. If f,~ , f E and f ~ ~ f s - d~s ~ oo in probability, as n -~ oo,
then sups ~ 1 ~R$ (In) - Rs ( f ) ~ -~ 0 in probability, as n -~ oo.

Proof. 1°. Let f E (Q), f N = ~N ( f s, es By the definition of (ej) (see
(5), (6)), it follows that fN E By Corollary 5, we have P-a.e.

10|fs-fNs|2Hsd03BBs~0, as N~~.

Thus there exists increasing sequences of stopping times (Tp) such that
TN,p  Tp  1 for each N, p, and

P (Tp  1) p-~ 0,  Tp) n-~ 0,

I p0|fs|2H0d03BBs  ~, N,F0 |fNs|2Hsd03BBs~ p0 |fs|2d03BBs + 1.

Then for each p,

E sup|t^N,p(fN)-t^N,p(fM)|2~0,

as N, M ~ ~. Thus the existence of an extension satisfying 1,2 follows imme-
diately.

2°. Now we prove Property 3 of the extension. Let f E (Q) and

10|fns-fs|2Hsd03BBs ~ 0, as n ~ ~.
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Then there exists a sequence of stopping times (Tn ) such that P (Tn  1) +
1’’ ~fa - fs das n~ o.

Hence, 

E supt |Rt^n (fn) - Rt^n (f)|2 ~
~ CE I f S - f $ 0, in probability, as n -~ oo .

Thus the property 3 holds for the extension which is obviously unique.

For the martingale representation theorem, it is important to describe the
stable subspace generated by M ( y), y e E’. According to the definition (see [8]),
this is the smallest subspace, ,C1(~VI), of the closure ofH1 = {M E P) : :

= E supt|Mt|  00} with respect to the norm that contains all the

integrals f o hs dM$ ( y) where hs is a real valued predictable function such that

E[10h2sdM(y)>s]1/2~,y~E’.

Proposition 12. Let M(y) E P) for each y E.E. Then the stable sub-
space of H1 generated by M(y) is

L1(M) = {Rt(f) = t0 fs * dMs : f ~L2loc(Q)

and E [(10 |fs|2Hs d03BBs)1/2]  ~}.
Proof. . From Burkholder’s inequality (see [8]) it follows that ,C 1 (M) is a closed

subspace of H1. Now the statement follows by the definition of the basis (ei)
and the normalized integrals R ( f ) .

3.2 Linear transformations of integrands and covariance spaces

Let F be a quasicomplete locally convex topological vector space and F’ its
topological dual. Denote ,Cw (E, F) the set of weakly continuous linear forms
from E to F. Let {Q, ,Cw (E, F)) be the set of all predictable ,Cw (E, F)-valued
functions us such that for each f’ E F,

10u’sf’,Qsu’sf’>d03BBs~ P-a.s.

where u$ : F’ ~ E’ is an adjoint linear form.

Definition 13. We define the stochastic integral t0 u’sdMs as the cylindrical
locally square integrable martingale Mt = ( Mt ( f’ ) ) in F such that

Mt(f’) = t0u’sf’dMs,f’ ~ F’ .
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Remark L~. It follows immediately by the definition that the covariance operator
function of M

~ws = .

Obviously, f’s E if and only if E .

Let Elbe a quasicomplete locally convex topological vector space and E be
its topological dual with weakly dense countable subset. Let u be a weakly
continuous linear form from Eito E, (i.e., u E e =

HK ~ E1. We define a Hilbert structure on u(H) C E by (see [21])

|f|G= inf |y|H.

We shall need the following statement from [21] (see Appendix for the proof). .

Proposition 15. (see ~~~~, Proposition ~I~.
1. The set a dense subset of the orthogonal complement ~C to =

u-1(0) u in Hand u is an isometry between ~C and u(H);
2. u(H) = HK, , where K = E ,C+(E). .

Corollary 16. For each y E H, .

Proof. The statement follows obviously from part 1) of Proposition 15.

These statements can be generalized a little. Consider a finite number of qua-
sicomplete locally convex topological vector spaces E;, (i =1, ... , N) with topo-
logical duals E’i having weakly dense countable subsets. Let Ki E L+(Ei), Hi =
HKi C E We define a Hilbert structure on G = ~N uz(Hi)
by (see [21])

N

~ Iy11H2 .
This setting can be reduced to the previous one by setting E = Ei ,

H= H1 and u(yi ®...®yN) 
Hence we obtained the following result.

Corollary 17. 1. G = HK where ~~ = ~N .

2. +... + ~ ~yyH~ + ... + 

Let Q1 be a predictable [’+(E1)-valued function and us be a predictable
L03C9(E1, E)-valued function. Denote Hs = Hs = HQs .

Proposition 18. Let Qs = Then

a~ Hs = 
L2 (Q) i f and only if there exists gs E L2 (Ql ) such that f s = us (gs ) .
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Proof. Part a) follows immediately from part 2) of Proposition 15. Since by
Corollary 5  Igs I, one of the implications in b) is obvious. Assume now
that f s E L2 (Q). Let f s = Then 10 |fs - fs |2Hsd03BBs  o.

By the definition of we see that f s = for some predictable E’-valued
function Thus 10|Qsfns-fs|2Hsd03BBs ~ 0. Let .- ._ Then =

~s (gs ) . By Proposition 15, gs takes values in the orthogonal complement of
~s 1 ~0}, and

= 
> |Qsfns - Qsfms|2Hs = |gns - gms|2H1s ~ 0.

This completes the proof.

It is readily checked that Corollary 17 and Proposition 15 yield the following
statement.

Corollary 19. Let El, ... , En be. quasicomplete topological vector spaces with
topological duals Ei, ... EN, , respectively, having weakly dense countable, subsets.
Let Qs = ~N for some predictable functions Qs and
some predictable ,Cw (Ei , , E) - valued functions ui. . Then

a~ Hs = = 
~

b) f$ E if and only if there exists gs E such that fs =
~1~ .

Remark 20. By Corollary 17,

N

(fslH, _ if fs =’~s(gs) ~ .
1 

Let Mz (i =1, ... , N) be cylindrical locally square integrable martingales in
Et with covariance operator functions Qs and quadratic variations f o Qisd03BBs .

Assume that for each y= E E=, y~ E ,

~M1(y~), = 0, if i # j . .

Proposition 21. Let u~ E . Then Mt = ~N is

a cylindrical locally square integrable martingale in E with covariance operator
function Q$ = ~1 nsQsus’ and quadratic variation fo .

Proof. By the definition for each f’ E E’ Mt(I’) = ~~ fQ . By our
assumption

10 ui’sf’dMis , i0 us’g’dMs ) = 0,
if i ~ j, for each f’, g’ E E’. Now the statement follows.
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3.3 Linkage between normalized and Ito integrals

Now we shall discuss the relation of the normalized and Ito integrals. Let T =
e2, ...} be a countable weakly dense subset of E’. For any I~’ E ,C+(E), using

the Hilbert- Schmidt orthogonalization procedure, we obtain an orthogonal basis
in HK :

ei - if # 0,e =  
0, otherwise,

ek+1 = { (Ke’k+ 1 
- 03A3ki= 1 (Ke’k+ 1 , ei)HK ei) /dk+1 , if dk+1 ~ 0 ,

0, Otherwise,

where dk+1 = ~k’ek+1 - ~k 1 e’ 

Remark 22. From the definition of (ek ), it follows that for each n there exists ek
E E’ such that

e~ , n=1,2,... (12)

Lemma 23. a~ If h E HK, > then there exists a uniq~ue F E HK such that h =
F o ~i (here F o k’(e’) = e’ E E’) ;

b~ Let F E HK. Then F o h E HK and ’

IF o K|2HK = |F o Ke’, e’) _ 03A3n F o K(en)2=|F|2H’K ,

(F o I~, = F o K(e’) for all e’ E E’. 
h

Proo f . a) If h E HK, then for all e’ E E’,

. (h, e’) = (h, . (13)

Define = (h, e’) Since (13) holds, F E and h = F o ~~ .

b) Let F E HK. Then by Riesz theorem, there exists h E H~ such that for
all e’ E E’ ,

= F o = (h, = (h, e’) .

Thus h = F o k’ and

|h|2HK = sup |F o K(e’)|2/ Ke’, e’> _ 03A3F °  +oo.
e’ 

n

The statement is proved.

Remark ~,~. Since the imbedding of HK into E is continuous, a continuous form
on E is continuous on HK, i.e..E’ C HK.
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Corollary 25. a~ If f’ E E’, we have f’ o K = K f’ and = I k’ f’ (HK , .
Also, 

~ 

f’ o K(e’) = f’,Ke’>E’,E = (e’, = (k’e’, (14)
= f’, Ke’>H’ K,HK.

b) the sequence defined by (12) is an orthogonal basis of HK, i.e. for
F E HK we have an expansion F = ~~ F o K(e’~)e~ in HK, and E’ is a dense
subset of HK.

c~ the kernel K on E’ can be continuously extended from E’ to HK, , and it
defines a canonical from HK onto H K. Also, for all F E HK, e’ E E’ ,
and h E HK, ,

(e’, = (F, = (k’F, = F o ~’(e’), (15)
= ~F~ ~ ~F~ = = 

°

Proof. a) Indeed, for each e’ E E’ we have

f’ o h(e’) = ( f’, = (e’, h f’) .

Thus f’ o k’ = K f’ and obviously = f’ .

b) By Lemma 23 for each e’ E E’, we have (F o h, = F o Is’(e’).
Therefore

n n

i.e. F = ~n F o in HK. Since e’~ E E’, it follows obviously that E’ is
dense in HK .

c) By (14),

(e’, h’ f’~E, E = Ii f’)Hh = ~ f’, .

By a), a sequence fn E E’ is a Cauchy sequence in HK if and only if h’ fn is

Cauchy in HK. If f n -~ F in HK then (~~ f n ) converges to an element g E HK . .
We denote g = and obtain (15) by continuity.

Remark ~6. We note that the set of restrictions _ ~ e’ e’ E E’ } is

isomorphic to E’/Ker h’ and h KE’ is an algebraic isomorphism. It
follows from the Corollary 25 that Ii can be continuously extended to a canonical
isomorphism from HK onto HK . .

Let L(Q) be the set of all functions Fs = such that Fs E HQ and
Fs o Qs (e’) = (e’, is P(IF)-measurable for all e’ E E’. Define 

= f F E L(Q) :10|Fs|2H’s das  oo P-a.s.}.


