@article{SPS_1997__31__256_0, author = {Takaoka, Koichiro}, title = {On the martingales obtained by an extension due to {Saisho,} {Tanemura} and {Yor} of {Pitman's} theorem}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {256--265}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {31}, year = {1997}, zbl = {0884.60075}, mrnumber = {1478735}, language = {en}, url = {http://www.numdam.org/item/SPS_1997__31__256_0/} }
TY - JOUR AU - Takaoka, Koichiro TI - On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman's theorem JO - Séminaire de probabilités de Strasbourg PY - 1997 SP - 256 EP - 265 VL - 31 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1997__31__256_0/ UR - https://zbmath.org/?q=an%3A0884.60075 UR - https://www.ams.org/mathscinet-getitem?mr=1478735 LA - en ID - SPS_1997__31__256_0 ER -
Takaoka, Koichiro. On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman's theorem. Séminaire de probabilités de Strasbourg, Volume 31 (1997), pp. 256-265. http://www.numdam.org/item/SPS_1997__31__256_0/
[1] An extension of Pitman's theorem for spectrally positive Lévy processes, Ann. Prob. 20 (1993), 1463-1483. | MR | Zbl
,[2] One-dimensional Brownian motion and the three-dimensional Bessel process, Adv. Appl. Prob. 7 (1975), 511-526. | MR | Zbl
,[3] Some remarks on Pitman's theorem, in this volume of the Séminaire de Probabilités. | EuDML | Numdam | Zbl
,[4] Continuous martingales and Brownian motion, Second edition, Springer (1994). | Zbl
& ,[5] Pitman type theorem for one-dimensional diffusion processes, Tokyo J. Math. 13 (1990), 429-440. | Zbl
& ,[6] Time reversal of random walks in dimension one, Tokyo J. Math. 12 (1989), 159-174. | MR | Zbl
,[7] _, Time reversal of random walks in Rd, Tokyo J. Math. 13 (1990), 375-389. | MR | Zbl
[8] On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ. 11 (1971), 155-167. | Zbl
& ,[9] Some Aspects of Brownian Motion Part II: Some Recent Martingale Problems, ETH Lecture Notes in Mathematics, Birkhäuser (to appear). | MR | Zbl
,