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Marches aléatoires auto-évitantes

et mesures de polymère
Jean-François Le Gall

1. Introduction.

L’objet de cette note est de montrer que la loi d’une marche aléatoire plane
faiblement auto-évitante, considérée sur un long intervalle de temps et convenable-
ment changée d’échelle, se rapproche de la mesure de polymère en dimension deux.
Les mesures de polymère ont été introduites formellement par Edwards [4], et une
définition mathématique rigoureuse en dimension deux a été rendue possible par
le travail de Varadhan [11]. La mesure de polymère s’interprète comme la loi d’un
mouvement brownien faiblement auto-évitant, et notre résultat est donc un analogue
auto-évitant du classique théorème d’invariance de Donsker. Le théorème principal
du présent travail a déjà été obtenu par Stoll [10], sous des hypothèses cependant
plus restrictives et à l’aide de techniques d’analyse non-standard. Tout récemment,
Cadre [3] a développé une autre approche de ce résultat, sous des hypothèses voisines
de celles de Stoll et en utilisant une méthode originale de plongement de marches
aléatoires planes dans le mouvement brownien. Pour la marche aléatoire simple,
une discussion plus générale, s’appliquant aussi aux modèles "auto-attractifs", est
donnée dans le travail de Brydges et Slade [2]. Signalons enfin que le problème beau-
coup plus difficile de l’approximation de la mesure de polymère en dimension trois
par des marches aléatoires faiblement auto-évitantes vient d’être résolu par Albe-
verio, Bolthausen et Zhou [1]. Le but de cette note est donc surtout pédagogique,
et son intérêt réside dans la simplicité des techniques utilisées, qui ont déjà été
appliquées à d’autres problèmes, tels que l’étude asymptotique du nombre de sites
visités par une marche aléatoire plane [5] ou l’existence de moments exponentiels
pour le temps local d’intersection brownien renormalisé [7]. Nous espérons aussi que
les estimations du présent travail pourront rendre quelque service dans l’étude des
nombreuses questions ouvertes concernant les mesures de polymère.

Ce travail est la rédaction d’un exposé donné dans le cadre du Cours Peccot au
Collège de France en 1989. Je remercie Marc Yor de m’avoir donné la possibilité de
le publier dans le Séminaire de Probabilités.

2. Hypothèses et énoncé du théorème principal.
Nous considérons une marche aléatoire X = (Xn, n E N) à valeurs dans 7~2,

issue de 0 sous la probabilité P. On a donc Xo = 0 et pour tout n > 1,
n

i=1

où les variables Yi, i =1, 2, ... sont indépendantes et équidistribuées à valeurs dans
Z2.
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Nous supposerons toujours que les trois hypothèses suivantes sont satisfaites :

(Hl) La marche aléatoire est centrée et a des moments d’ordre deux :

 oo, E[X1] = 0.

(H2) La marche aléatoire X est adaptée, au sens où la loi de Xi n’est pas portée
par un sous-groupe strict de ~2.

(H3) La marche aléatoire est isotrope, au sens où la matrice de covariance de
Xi s’écrit

cov (X1 ) = Q2 Id
où 03C3 > 0 et Id est la matrice identité en dimension deux.

L’hypothèse importante est (Hl). L’hypothèse (H3) a pour seul but de simplifier
les énoncés qui suivent, en évitant l’introduction de mouvements browniens "non-

isotropes".
Pour tout entier N > 1, pour 0  t  1, on pose

X(N)t = 

1 03C3N
X[Nt]

où [Nt] désigne la partie entière de Nt. Soit la loi de 0  t  1), qui
est une mesure de probabilité sur l’espace de Skorokhod ~([o,1],1~2). D’après le
théorème de Donsker,

Q (N) 
N-+CXJ

où la notation (~ indique la convergence étroite, et W est la loi sur ~D([o,1], I~2) de

(Bt, 0  t  1), si B désigne un mouvement brownien plan issu de 0.
Introduisons maintenant les lois des processus auto-évitants. Pour tous À > 0,

N > 1 on pose
= X~))~ ]

et on définit alors comme la loi de 0  t  1) sous la probabilité

exp ( - À ~ I(X2 = X~)~ ~ P .

L’idée est d’attribuer un poids plus faible, d’autant plus faible que À est grand, aux

trajectoires qui présentent beaucoup d’auto-intersections.
Il reste à introduire la loi du mouvement brownien auto-évitant, c’est-à-dire

la mesure de polymère en dimension deux. On utilise pour cela les temps locaux
d’auto-intersection du mouvement brownien plan B (voir [8] ou [6], Chapitre VIII).
Soit A = ~(s, t), 0  s  t  1}. Il existe p.s. une unique famille (ax,x E I~2) de
mesures de Radon sur A telle que : i

(i) L’application x ~ ax est continue pour la topologie de la convergence vague.
(ii) Pour toute partie borélienne H de A et pour toute fonction h mesurable

positive sur 1~2,
H h(Bs - Bt) dsdt = dx.
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En prenant pour h une approximation de la mesure de Dirac en 0, on obtient
l’expression formelle

ao (H) = bo (BS - Bt ) ds dt.
On vérifie aisément que  oo si x ~ 0, p.s. et que ao(A) = oo p.s. On
peut néanmoins "renormaliser" de la manière suivante (voir par exemple [6J,
Chapitre VIII). Pour tous entiers p > 1,1~ E ~ l, ... , 2p-1 }, on pose

A~ = [(2k - 2)2-p, (2k -1)2-r[xJ(21~ -1)2-r, C ~.

Des arguments simples de changement d’échelle montrent que la série

0 2P~~

É ~ ~a°(A~) - F[a°(Ak)J)
p=1 l~=1

converge dans L2 et p.s. La somme de cette série, notée ~y, est le temps local d’in-
tersection renormalisé de B sur l’intervalle [o,1J. On montre que, pour tout À > 0,

LÀ = ~)J  o0

(voir [7], p.178, pour un argument simple, ce résultat étant dû à Varadhan [11] dans
un cadre un peu différent).

La mesure de polymère Wa est par définition la loi de (Bt, 0  t  1) sous la
probabilité

{La)-1 exp(-À ~y) ~ P.
Nous sommes maintenant en mesure d’énoncer le résultat principal de ce travail.

Théorème 1. Pour tout 03BB > 0,

Q(N)03BB/N(e) N~~W03C3-203BB .

De manière équivalente, pour toute fonction continue bornée F sur ~D([o,1J, JR2),

lim 
A/N 

- 

a- A .

Or, par définition,

= s  1)J

où

JN = £ 
Pour toute variable aléatoire intégrable U, notons { U } = U - E[U]. . Remarquons
qu’on peut aussi écrire

= F(X ~N)~~ _ s _ 1)],
à condition de poser

(N)03BB/N = E[exp(-03BB{JN})].



106

On voit alors que le Théorème 1 est une conséquence de la définition de WÀ et des
deux propositions suivantes.

Proposition 2. On a

({JN}, (X(N)s, 0 ~ s ~ 1)) (loi) N~~ (03C3- 203B3,(Bs, 0  s  1)).

Proposition 3. Pour tout À > 0,

 oo.

N>1

En effet, supposons démontrées les Propositions 2 et 3. Alors la suite

UN = F(X~N>> ~ ~ s ~ 1)
converge en loi vers U = ~) F(Bs, 0  s  1). De plus, la Proposition 3
montre que la suite (UN) est bornée dans L2. On conclut alors que E~UN~ converge
vers E[U], et en prenant F = 1 on voit de même que Lffk converge vers -L~-2~.

La Proposition 2 est très proche d’un résultat de Rosen [9], qui suppose cepen-
dant la marche aléatoire X apériodique. La convergence conjointe de {JN} et X~N~
n’est pas énoncée par Rosen mais découle de la méthode qu’il utilise. Nous donnons
dans la partie 3 une démonstration de la Proposition 2 un peu différente de celle de
Rosen, reposant sur des estimations que nous utiliserons aussi dans la preuve de la
Proposition 3. Cette dernière proposition est démontrée dans la partie 4.

3. Etude asymptotique des nombres d’intersection.
Nous commençons par un résultat relatif au nombre de couples d’intersection

de deux marches aléatoires indépendantes. Nous considérons une seconde marche
aléatoire plane X’ issue de 0 indépendante de X. Nous supposons que X’ satisfait
les mêmes hypothèses (H1),(H2),(H3) que X avec la même constante cr (cependant
X et X’ n’ont pas nécessairement même loi). Pour tout N > 1, on pose

IN = 1 NI(Xi = X’j)
et on définit X’(N) de la même manière que X(N). .

Lemme 4. On a

1)) --+ (03C3-203B2([0, 1]2), (Bs, B’s; 0 ~ s ~ 1)),

où B’ est un mouvement brownien plan indépendant de B issu de 0, et

) = / / (Bg - Bt) ds dt

est le temps local d’intersection de B et B’ sur [0,1]2 (voir par exemple [6], Chapitre
VIII). De plus, il existe une constante Cl  oo telle que

sup  Cl. (1)
N>1
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Démonstration. Nous reprenons les arguments de Rosen [9], en supposant d’abord
que X et X’ sont apériodiques (i.e. si § est la fonction caractéristique de Xl, ou de
Xi, les conditions ~(~ = 1 et £ G] - 7r,7r]2 entraînent £ = 0). Pour E > 0, on pose

IN = Q 2 / ~ /~ p~ {X ~N~, âs dt,
o 0

où pE(x, y) = (2~r~)-1 exp(- y - x~2/(2~)). D’après le Lemme 1 et la formule (2.6)
de Rosen [9], il existe deux constantes C > 0, b > 0 telles que, pour tout e 1 [,

lim sup E[(I~N - IN)2]1/2 ~ C~03B4 (2)

(Rosen traite le cas a = 1, mais des modifications triviales de son argument donnent
le résultat pour 7 quelconque). Pour ~ > 0 fixé, IN est une fonction continue bornée
du couple {X(N),X’(N)). Le théorème de Donsker entraîne alors

( S X’s(N); 0 ~ s - 1)) (loi) N~~ (03C3-2 0 0 Bt)dsdt, (Bs, B’s; 0 - s - 1)).
D’autre part,

1 1

lim 1010p~(Bs, B’t) ds dt = 03B2([0, 1]2), p.s.

grâce à la formule de densité de temps d’occupation pour le temps local d’intersection
(voir par exemple [6], Chapitre VIII). La première assertion du lemme découle alors
de (2), et il en va de même pour la seconde, puisque, pour ~ fixé, les variables IN,
N > 1 sont bornées uniformément.

Il reste à s’affranchir de l’hypothèse d’apériodicité. Pour cela on introduit une
suite de variables aléatoires indépendantes équidistribuées, indépendantes du
couple (X, X’) et telles que = 1] = 1 - = 0~ = p E~O,1 ~. On définit
Sn = E 1 + ... puis X~, = , de sorte que X est une marche aléatoire
apériodique vérifiant les mêmes hypothèses que X (la constante a2 est remplacée
par pa2). On construit de même X’ à partir de X’ et d’une autre suite (~n) de même
loi que (En) et indépendante du triplet (~n, X~, X~; n > 0). On définit alors IN
comme IN en remplaçant le couple (X, X’) par (X, X’), et de même (X ~N~, X’~N~).
On voit facilement que, pour tout r~ > 0, IN  sur l’ensemble >

N, S~l+~)N > N}, indépendant du couple {X, X’) et dont la probabilité tend vers
1, uniformément en N, lorsque p croît vers 1. En appliquant à IN la majoration (1)
on obtient aussitôt que cette majoration est aussi vraie dans le cas général.

De même, pour obtenir la première partie de la proposition, on remarque
d’abord que

(X(N)t ,X’t(N),(N)t, ’(N)t;0 ~ t ~ 1 B’t, 
1 
B t, 1 B’ ’ 6 - t -1 .

En utilisant le cas apériodique et la majoration ci-dessus de IN en fonction de
Î~~1+,~)N~, et en faisant tendre p vers l, on en déduit que toute valeur d’adhérence de
la suite (X ~N~, X’~N>, , IN) doit être de la forme (B, B’, .h) avec  ~-2,~((0,1~2).
D’autre part, on vérifie immédiatement que pour tout N, E[IN] > (1- et

donc en faisant à nouveau tendre p vers 1, on voit qu’on a nécessairement =

E ~~-2 p ( ~0,1 ~ 2 ) ~ ce qui force l’égalité = ~ -2 ~ ( ~0,1 ~ 2 ) et complète la preuve. Il
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Lemme 5. Il existe une constante C2 telle que, pour tout N > 1,

C2.

Démonstration. On a pour tout N > 2,

E E 
N/2~~N

+~ E 
0~iN/2j~N

= 

[N/2] N J[N/2] + [N/2] N J[N/2] + LN,

où, d’une part est indépendante de et a même loi que et d’autre

part, 
[N/2][N/2]+1

z=0 j=0

On peut appliquer la majoration (1) aux marches aléatoires ~ = ~~ =
ce qui conduit à 

’

Ci.

Ensuite, en soustrayant les espérances et en appliquant l’inégalité triangulaire,

~[{~} ] ’  ~[("~’ {~[N/2]} + 2014~2014{~N/2]}) + 

=2~~lE[{J~}~~+(C,)~
Si ~ = 2~  N  2~+~}, l’inégalité précédente montre que, pour
tout p e]2"~, 1[, on a dès que k est assez grand

~+i~P~+(Ci)~.
On conclut que la suite (ak) est bornée. D

Démonstration de la Proposition 2. Reprenons les notations de la preuve du
Lemme 5, en supposant N pair :

JN = ~~N/2 + ~N/2 + LN
avec .

1 
N/2N/2

~=~EE~=~)-
~=1j=i

Notons comme précédemment X~ = (77V)-~/~~, X~~~ = 
pour 0  ~ ~ 1/2. Le Lemme 5 donne

((X~B~;0~~1/2),~) ~°’~ ((~,~;0~1/2),/?([0,1/2]~))
pair
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où B’, B" sont deux mouvements browniens plans issus de 0 indépendants, et

03B2([0, 1/2]2) = 1/201/20 bo (Bs - ds dt.

D’autre part, on a

X~(N) Xn(N) X(N) (~~ B~ Bn B)( > > ) 
N-too 

( > >

avec Bt = B1/2-t-B1/2, = B1/2+t-B1/2 pour 0  t  1/2. Avec cette définition
de B’ et B" on a l’égalité (formellement évidente)

bo(Bs - Bt’) ds dt = [0,1/2[ ]1/2,1] bo (BS - Bt) ds dt .

En combinant ce qui précède, on obtient donc que
(ni)

(X(N), LN) (B, 03B10([0, 1/2[x]1/2, 1])).
N-too,N pair

Soit ensuite m > 1. On obtient par récurrence la formule

p 2k-1

~N = 2 m ~ N + £ £ (3)
p=1 k=1 p=1

avec 

j(p) = 

2 
£ 1( x = x )

Lk,pN = 1 N 03A3 I(Xi = Xj).

Restreignons-nous aux valeurs de N multiples de 2m. Cette restriction est sans
importance à cause de la propriété

hm E[(JN - = 0

qui est très facile à vérifier. Alors, les variables N, p 
= l, ... , 2m sont indépen-

dantes et de même loi que J2-mN. Le Lemme 4 entraîne
2 "‘

,’ Z = 2-2Tn’ 2m }2~ ~ (~2 2 m. (4)
p=1

D’autre part, le même raisonnement que ci-dessus pour l’étude de LN = L~1 montre
que, pour tous k, p,

-’ 

où l’ensemble A~ a été défini dans la partie 2. Un argument simple de tension montre
que cette convergence a lieu conjointement pour tous k, p. En particulier,

m 2k-1 1 
(loi) 

m 2k-1 i

(X( )~ ~ ~ ~ (B’ ~ L.~ .

k=lp=l ~,=1 p=1
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Il est maintenant facile d’en déduire la Proposition 2 : on utilise la formule (3), en
remarquant que pour m grand,

2m

{2-m 03A3 J(p)2-m N}

est petit en norme L2, uniformément en N, d’après (4), cependant que

{03B10(Akp)}
est proche de ~y, par la définition même de ~y.

4. Preuve de la Proposition 3.
Nous reprenons les notations de la preuve de la Proposition 2, sans supposer N

multiple de 2m. On pose pour m > 1,

JN =JN- 1 2m £ I ( Xi=X..
k=1 

Comme on a aussi
rra 2k-1

JmN = 03A3 03A3Lk,pN,
k=1 p=1

la majoration (1) entraîne que pour tout m fixé,

 oo.
N>1 N>1

Puisque JN = JN dès que N  2m, il suffit pour établir la Proposition 3 de montrer
que Cm03BB  oo. Pour cela, on va majorer en fonction de Partons
de l’égalité

2m

Jm+1N = JmN + 03A3m+1,pN.

Soient .1’, a" tels que â, + ~" = 1. Alors,
2m

 ~{L~+l’p~)~~~a"
p=1

2m

= ~ 
p=1

L’inégalité e-" -1 + u  ~c2 pour ~c > 0 montre cependant que

(1 _ ~ - Ci(~1~~)a2 2rr~’
d’après le Lemme 4. De façon plus précise, les arguments de la partie 3 montrent
que N est majoré par le nombre de couples d’intersection de deux marches
aléatoires indépendantes sur l’intervalle {o, l, ... , [2-~’~+l~N] + 1}, et le résultat
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énoncé découle de la majoration (1) si 2-mN > l. Si 2-mN  l, on voit aisément

que LN+l’p = 0 et la majoration est triviale.
On a ensuite, toujours d’après la majoration (1),

I (1 + _ (~n)2E~LN+1,~12 
 Cr1(~!!)2 2 2m 

Finalement en combinant les deux majorations obtenues on arrive facilement à

- ll  3C1(~n)22-2mexp((C1)1/2%In2-m)~
En reportant cette majoration dans les calculs précédents, on trouve

Câ +1  (C~,)~~~~ 1 -f- 
2rn À/ À"

 (Câ, )~’~~’~ exp 
Il est facile de déduire le résultat recherché de cette inégalité. Fixons p > 0 et pour
tout m > 2 posons

°° 

1
um = 11 1 _ k _2 , 

03BBm = Pum
k=m

de sorte que ~1~,+l~~m =1- m-2. On applique alors la majoration précédente avec
03BB _ 03BBm+1, 03BB’ = 03BBm, 03BB" _ m203BBm+1 :

Cm+103BBm+1  Cm exp (3C À2 m2 2-m exp((C )1/2 À m22-m))
(noter que Câ > 1). Comme la suite (am) est bornée l’inégalité précédente entraîne

sup Câm  oo.

m>1 
rn

Pour conclure, on remarque que d’après l’inégalité de Jensen,

Cm03C1 ~ (Cm 03BBm)03C1/03BBm ~C m03BBm ,

et donc supm~1 CP  oo ce qui termine la preuve puisque p était arbitraire.
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