JEAN-FRANCOIS LE GALL
Marches aléatoires auto-évitantes et mesures de polymeres

Séminaire de probabilités (Strasbourg), tome 31 (1997), p. 103-112
<http://www.numdam.org/item?id=SPS_1997__31__ 103_0>

© Springer-Verlag, Berlin Heidelberg New York, 1997, tous droits réservés.

L’acces aux archives du séminaire de probabilités (Strasbourg) (http:/portail.
mathdoc.fr/'SemProba/) implique 1’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou im-
pression de ce fichier doit contenir la présente mention de copyright.

‘NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=SPS_1997__31__103_0
http://portail.mathdoc.fr/SemProba/
http://portail.mathdoc.fr/SemProba/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Marches aléatoires auto-évitantes
et mesures de polymere

Jean-Francois Le Gall

1. Introduction.

L’objet de cette note est de montrer que la loi d’une marche aléatoire plane
faiblement auto-évitante, considérée sur un long intervalle de temps et convenable-
ment changée d’échelle, se rapproche de la mesure de polymere en dimension deux.
Les mesures de polymere ont été introduites formellement par Edwards [4], et une
définition mathématique rigoureuse en dimension deux a été rendue possible par
le travail de Varadhan [11]. La mesure de polymére s’interpréte comme la loi d’un
mouvement brownien faiblement auto-évitant, et notre résultat est donc un analogue
auto-évitant du classique théoréme d’invariance de Donsker. Le théoréme principal
du présent travail a déja été obtenu par Stoll [10], sous des hypotheses cependant
plus restrictives et a I’aide de techniques d’analyse non-standard. Tout récemment,
Cadre 3] a développé une autre approche de ce résultat, sous des hypothéses voisines
de celles de Stoll et en utilisant une méthode originale de plongement de marches
aléatoires planes dans le mouvement brownien. Pour la marche aléatoire simple,
une discussion plus générale, s’appliquant aussi aux modeles “auto-attractifs”, est
donnée dans le travail de Brydges et Slade [2]. Signalons enfin que le probleme beau-
coup plus difficile de 'approximation de la mesure de polymeére en dimension trois
par des marches aléatoires faiblement auto-évitantes vient d’étre résolu par Albe-
verio, Bolthausen et Zhou [1]. Le but de cette note est donc surtout pédagogique,
et son intérét réside dans la simplicité des techniques utilisées, qui ont déja été
appliquées a d’autres problémes, tels que I’étude asymptotique du nombre de sites
visités par une marche aléatoire plane [5] ou lexistence de moments exponentiels
pour le temps local d’intersection brownien renormalisé [7]. Nous espérons aussi que
les estimations du présent travail pourront rendre quelque service dans I'étude des
nombreuses questions ouvertes concernant les mesures de polymere.

Ce travail est la rédaction d’un exposé donné dans le cadre du Cours Peccot au
College de France en 1989. Je remercie Marc Yor de m’avoir donné la possibilité de
le publier dans le Séminaire de Probabilités.

2. Hypotheéses et énoncé du théoréme principal.

Nous considérons une marche aléatoire X = (X,,n € N) & valeurs dans Z?,
issue de 0 sous la probabilité P. On a donc Xy = 0 et pour tout n > 1,

ou les variables Y;, ¢ = 1,2,... sont indépendantes et équidistribuées & valeurs dans
Z2.
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Nous supposerons toujours que les trois hypotheses suivantes sont satisfaites :
(H1) La marche aléatoire est centrée et a des moments d’ordre deux :

E[Xi’] < oo,  E[Xi]=

(H2) La marche aléatoire X est adaptée, au sens ou la loi de X n’est pas portée
par un sous-groupe strict de Z2.
(H3) La marche aléatoire est isotrope, au sens ol la matrice de covariance de
X, s’écrit
cov(X;) = 0?1d
ol o > 0 et Id est la matrice identité en dimension deux.

L’hypothese importante est (H1). L’hypothese (H3) a pour seul but de simplifier
les énoncés qui suivent, en évitant 'introduction de mouvements browniens “non-
isotropes”.

Pour tout entier N > 1, pour 0 <t < 1, on pose

1
xM = —=x
A
ou [Nt] désigne la partie entitre de Nt. Soit Q?V) la loi de (Xt(N) 0<t<1),qui
est une mesure de probabilité sur I'espace de Skorokhod D([0,1],R?). D’apres le

théoréme de Donsker,
(e)

QW) —w
N—oo
ol la notation o), indique la convergence étroite, et W est la loi sur D([0, 1], R?) de
(Bs,0 < t < 1), si B désigne un mouvement brownien plan issu de 0.

Introduisons maintenant les lois des processus auto-évitants. Pour tous A > 0,

N > 1 on pose
L&N) [exp - A Z (X, =X; ))]
0<i<j<N

et on définit alors Q(AN) comme la loi de (Xt(N), 0 <t <1) sous la probabilité

N)\—
CMtexp(-2 Y I(Xi=X;))-P
0<i<j<N
L’idée est d’attribuer un poids plus faible, d’autant plus faible que A est grand, aux
trajectoires qui présentent beaucoup d’auto-intersections.

Il reste & introduire la loi du mouvement brownien auto-évitant, c’est-a-dire
la mesure de polymére en dimension deux. On utilise pour cela les temps locaux
d’auto-intersection du mouvement brownien plan B (voir [8] ou [6], Chapitre VIII).
Soit A = {(s,t),0 < s < t < 1}. Il existe p.s. une unique famille (@, € R?) de
mesures de Radon sur A telle que :

(i) L’application £ — o est continue pour la topologie de la convergence vague.

(ii) Pour toute partie borélienne H de A et pour toute fonction h mesurable
positive sur R?,

/ h(Bs — By)dsdt = / h(z) az(H) dz.
H R2
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En prenant pour h une approximation de la mesure de Dirac en 0, on obtient
Pexpression formelle

- / §o(B, — By) ds dt.
H

On vérifie aisément que a,(A) < oo si ¢ # 0, p.s. et que ap(A) = oo p.s. On
peut néanmoins “renormaliser” ap(A) de la maniere suivante (voir par exemple [6],
Chapitre VIII). Pour tous entiers p > 1, k € {1,...,2P~1}, on pose

Al =[(2k — 2)27P, (2k — 1)27P[x](2k — 1)27P,2k27P] C A.
Des arguments simples de changement d’échelle montrent que la série

oo 2771

> (Y (eo(4]) - Blao(4D)) )

p=1 k=1

converge dans L? et p.s. La somme de cette série, notée v, est le temps local d’in-
tersection renormalisé de B sur l'intervalle [0, 1]. On montre que, pour tout A > 0,

Ly = Elexp(—A7)] < o0

(voir [7], p.178, pour un argument simple, ce résultat étant dii & Varadhan [11] dans
un cadre un peu différent).
La mesure de polymere W) est par définition la loi de (B;,0 <t < 1) sous la
probabilité
(Lx) 7" exp(=A7) - P.

Nous sommes maintenant en mesure d’énoncer le résultat principal de ce travail.
Théoréme 1. Pour tout A > 0,

(e)
Qv = Wosa -

De manitre équivalente, pour toute fonction continue bornée F sur D([0, 1], R?),
. N
Jim QX F) = W,-a[F).
Or, par définition,
N N)y—
QONIE) = (L) T Elexp(-AJn) F(X(M,0 < s < 1)

ol .
IV =% E I(X; = X;).
0<i<j<N
Pour toute variable aléatoire intégrable U, notons {U} = U — E[U]. Remarquons
qu’on peut aussi écrire

QNIF] = (L) ! Elexp(-MJn}) F(X™,0 < s < 1),

a condition de poser
L{)} = Blexp(=MJIn}).
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On voit alors que le Théoreéme 1 est une conséquence de la définition de W), et des
deux propositions suivantes.
Proposition 2. On a

(loi)

({In} (X,0 <5 < 1)) —— (0777, (B, 0 < 5 < 1))

Proposition 3. Pour tout A > 0,
sup Elexp(=A{Jn})] < c0.
N>1

En effet, supposons démontrées les Propositions 2 et 3. Alors la suite
Uy = exp(-MJIN}) F(XM, 0<s< 1)
converge en loi vers U = exp(—o 2\ v) F(B,,0 < s < 1). De plus, la Proposition 3
montre que la suite (Uy) est bornée dans L2. On conclut alors que E[Ux] converge
vers E[U], et en prenant F' = 1 on voit de méme que L /1)\1 converge vers L,-2y.

La Proposition 2 est trés proche d’un résultat de Rosen [9], qui suppose cepen-
dant la marche aléatoire X apériodique. La convergence conjointe de {Jy} et X V)
n’est pas énoncée par Rosen mais découle de la méthode qu’il utilise. Nous donnons
dans la partie 3 une démonstration de la Proposition 2 un peu différente de celle de

Rosen, reposant sur des estimations que nous utiliserons aussi dans la preuve de la
Proposition 3. Cette derniére proposition est démontrée dans la partie 4.

3. Etude asymptotique des nombres d’intersection.

Nous commengons par un résultat relatif au nombre de couples d’intersection
de deux marches aléatoires indépendantes. Nous considérons une seconde marche
aléatoire plane X’ issue de 0 indépendante de X. Nous supposons que X' satisfait
les mémes hypotheses (H1),(H2),(H3) que X avec la méme constante o (cependant
X et X’ n’ont pas nécessairement méme loi). Pour tout N > 1, on pose

= Z Z I(X; = X))
1=0 j=0
et on définit X’(N) de la méme maniére que X ),

Lemme 4. On a
(In, (XM, XMM50< s < 1)) ( ~24([0,1]%), (B,, BL;0 < s < 1)),

ou B’ est un mouvement brownien plan mdependant de B issu de 0, et

1 1
B0, 1]2) = /0 /0 60)(B. — Bl)dsdt

est le temps local d’intersection de B et B' sur [0,1]? (voir par exemple [6], Chapitre
VIII). De plus, il existe une constante C1 < oo telle que

sup E[(In)}] < Cy. (1)
N>1
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Démonstration. Nous reprenons les arguments de Rosen [9], en supposant d’abord
que X et X' sont apériodiques (i.e. si ¢ est la fonction caractéristique de X1, ou de
X1, les conditions |¢(&)| = 1 et £ €] — m, 7]? entrainent ¢ = 0). Pour € > 0, on pose

1 1
g / / pe(X), X1 ds dt,
0 JO

oll pe(x,y) = (2me) "L exp(—|y — z|?/(2€)). D’aprés le Lemme 1 et la formule (2.6)
de Rosen [9], il existe deux constantes C' > 0, § > 0 telles que, pour tout € €]0, 1],

limsup E[(I§ — In)?]Y/? < C€b (2)
N—oc0

(Rosen traite le cas o = 1, mais des modifications triviales de son argument donnent
le résultat pour o quelconque). Pour € > 0 fixé, I, est une fonction continue bornée
du couple (X)) X'(N)), Le théoréme de Donsker entraine alors

(I, (X, X0 < 5 < 1)) 0D -// pe(B., Bl)dsdt, (B,, B1;0 < s < 1)).

D’autre part,

hm//pe(Bs,Bt)dsdt 8(0,1%), ps.

grace a la formule de densité de temps d’occupation pour le temps local d’intersection
(voir par exemple [6], Chapitre VIII). La premiére assertion du lemme découle alors
de (2), et il en va de méme pour la seconde, puisque, pour ¢ fixé, les variables I%,
N > 1 sont bornées uniformément.

Il reste a s’affranchir de I'hypothese d’apériodicité. Pour cela on introduit une
suite (¢,) de variables aléatoires indépendantes équidistribuées, indépendantes du
couple (X, X’) et telles que Ple, = 1] = 1 — Ple, = 0] = p €]0,1[. On définit
Sp = €1+ - +¢€, puis X, = Xg,, de sorte que X est une marche aléatoire
apériodique vérifiant les mémes hypothéses que X (la constante o2 est remplacée
par po?). On construit de méme X’ & partir de X’ et d’une autre suite (¢/,) de méme
loi que (en) et indépendante du triplet (€n, Xn, X];n > 0). On définit alors Iy
comme Iy en remplagant le couple (X, X’) par (X X'), et de méme (XM, X/(N)),
On voit facilement que, pour tout n > 0, Iy < I[(1+,7) N) sur 'ensemble {S(1+,,) N>
N, SEI N =N }, indépendant du couple (X, X’) et dont la probabilité tend vers

1, uniformément en N, lorsque p croit vers 1. En appliquant & Iy la majoration (1)
on obtient aussitét que cette majoration est aussi vraie dans le cas général.

De méme, pour obtenir la premiere partie de la proposition, on remarque
d’abord que

™, XM X, %0 <1 <1) — (B, By, fB,,t, f
En utilisant le cas apériodique et la majoration ci-dessus de Iy en fonction de
I [(14+m)N], €t en faisant tendre p vers 1, on en déduit que toute valeur d’adhérence de
la suite (XM, X"(N) 'Ty) doit étre de la forme (B, B, I.) avec I, < c23([0,1]2).
D’autre part, on vérifie immédiatement que pour tout N, E[In] > (1—p)*E[IN], et
donc en faisant & nouveau tendre p vers 1, on voit qu’on a nécessairement F[I] =
E[072p([0,1]%)] ce qui force I'égalité I, = 0=23([0,1]?) et compléte la preuve. 0

150 <t <1).
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Lemme 5. Il existe une constante Cy telle que, pour tout N > 1,

E[{Jn}*] < Ca.

Démonstration. On a pour tout N > 2,

1 1
JN:F Z I(XiZXj)-i‘ﬁ Z I(X,L:XJ)
0<i<j<N/2 N/2<i<j<N
1
+ % Yo IXi=X;)
0<i<N/2<j<N
N/2 N/2
=——[J\/,] I /1+—[ 4 ]J[N/21+LN7

ol, d’une part j[N/Q] est indépendante de Jjn/o) €t @ méme loi que Jin gy, et d’autre
part,

1 [N/2] [N/2]+1
Lnsw oY IXvya-i = Xvyareg)-
=0 j=0

On peut appliquer la majoration (1) aux marches aléatoires X; = X|n/9)—i, X] =
X(N/2)+5> ce qui conduit a
E[L}] < G

Ensuite, en soustrayant les espérances et en appliquant 'inégalité triangulaire,
1/2
E[{Jn}? < E[([ ik ]{J[N/ 1+ [_/“]‘{J[N/ 12+ eV
21/2[ / ]E[{J[N/Q]} ]1/2 +(Cl)1/2

Si ax = sup{E[{Jn}?]"/?;2F < N < 2%+1} Dinégalité précédente montre que, pour
tout p €]271/2,1], on a dés que k est assez grand

ak+1 < pak + (Cc)/2.

On conclut que la suite (ax) est bornée. O

Démonstration de la Proposition 2. Reprenons les notations de la preuve du
Lemme 5, en supposant N pair :

1 1
JN = §JN/2 + ’Q'JN/Q + Ly

avec
N/2N/2

___ZZI(X/ X//

=1 j=1

Notons comme précédemment X,") = (UN)—1/2X[INt], XN = (oN)- 1/QX['I’W]
pour 0 <t <1/2. Le Lemme 5 donne
(loi)

(™, X7 M0 <t <1/2),Iy) | —o (B B0 <t <1/2),6(01/2)
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ou B’, B"” sont deux mouvements browniens plans issus de 0 indépendants, et

1/2 172
B(0,1/2]%) = /0 /0 5o(B! — BY')ds .

D’autre part, on a

(X/(N), x7(N) ()Y (lof) (B, B", B)

N—oo

avec B = By/2—¢+— B2, B/ = B1/a44—By/2 pour 0 < t < 1/2. Avec cette définition
de B’ et B" on a P'égalité (formellement évidente)

1/2 12
/ / §o(B. — Bl') dsdt = / §0(B, — By) dsdt .
0 0 [0,1/2[x]1/2,1]

En combinant ce qui précede, on obtient donc que

(X, Ly) s (BLao((0,1/2[]1/2,1).

N—o0,N p.

Soit ensuite m > 1. On obtient par récurrence la formule

gm P 2k 1
=2 Z IPn+ Z Lk, 3)
p=1 k=1 p=1
avec om
JQ(p)mN=W Z I(X; = X;)
(p—1)2-mN<i<j<p2~"N
1
Lhe = = > I(X; = X;).

(2p—2)2-FN<i<(2p—1)2-FN<j<2p2=kN
Restreignons-nous aux valeurs de N multiples de 2™. Cette restriction est sans
importance a cause de la propriété
Jim El(Iy — Jompz-mn)?] =

qui est treés facile & vérifier. Alors, les variables J. (’_’)m N2 P=1,...,2™ sont indépen-
dantes et de méme loi que Jy-m y. Le Lemme 4 entraine

-
[(2—™ Z{J“’LN =272 9" E[{Jy-mpy}?] < Cp 2™ (4)

D’autre part, le méme raisonnement que ci-dessus pour I’étude de Ly = L}\}l montre
que, pour tous k, p,

@™, iy L2 (s, {ao(A8)})

ou 'ensemble A:; a été défini dans la partie 2. Un argument simple de tension montre
que cette convergence a lieu conjointement pour tous k,p. En particulier,

mzkl m2kl

(XM, 3" Z{Lk”’}) (B,> D {ao(ADD).

k=1 p=1 k=1 p=1
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Il est maintenant facile d’en déduire la Proposition 2 : on utilise la formule (3), en
remarquant que pour m grand,

-
{27y I )
p=1

est petit en norme L?, uniformément en N, d’apres (4), cependant que

m 2k—l

7S {ao(4)}

k=1 p=1

est proche de v, par la définition méme de ~.

4. Preuve de la Proposition 3.

Nous reprenons les notations de la preuve de la Proposition 2, sans supposer N
multiple de 2™. On pose pour m > 1,

gm

1’\7=JN—%Z > I(X; = X;).

k=1 (k—1)2-mN<i<j<k2-mN

Comme on a aussi
m 2k—1

=YY i

k=1 p=1
la majoration (1) entraine que pour tout m fixé,

CT := sup Elexp(—A{JF})] < sup exp(AE[J}}]) < oo.
N>1 N>1
Puisque Jy = J§7 dés que N < 2™, il suffit pour établir la Proposition 3 de montrer

que sup,,>; C7* < oc. Pour cela, on va majorer CJ**! en fonction de CJ*. Partons
de I'égalité

-
TR = IR+ Lt
p=1
Soient A, A tels que % + % = 1. Alors,
-
Elexp(-=MJF+' )] < Elexp(-N{JF NV Elexp(—X">_{LF 7}
p=1

om
= Blexp(-N{JRHIMY ]| Blexp(-X"{LF 7).
p=1

L’inégalité e — 1 + u < u? pour » > 0 montre cependant que
| Elexp(-N"Li17)] = (1 = MEILFHP)| < W)RE((LEH7)?) < Cy (3222,
d’apres le Lemme 4. De fagon plus précise, les arguments de la partie 3 montrent

que N LTI(,’H’P est majoré par le nombre de couples d’intersection de deux marches
aléatoires indépendantes sur lintervalle {0,1,...,[27(m*VUN] 4 1}, et le résultat
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énoncé découle de la majoration (1) si 27™N > 1. Si 27™N < 1, on voit aisément
que NP = 0 et la majoration est triviale.
On a ensuite, toujours d’apres la majoration (1),

|exp(VEILR 7)) — (1+ B )| < (V) BILF 7 exp(V BILR 7))
< Cy(N)227%™ exp((Cy)/2N"27™).
Finalement en combinant les deux majorations obtenues on arrive facilement a
|Elexp(=N"{LF1PH] - 1] < 3C1(X")227 ™ exp((C1)/2N"2™™).
En reportant cette majoration dans les calculs précédents, on trouve

, 2mA/>\//
Cj\n+1 < (C;\TIL))‘/A (1 + 301(A”)22_2mexp((Cl)l/Q/\”2_m))

< (CHMY exp (301»"2—’” exp((Cl)1/2)\l'2_m)).

11 est facile de déduire le résultat recherché de cette inégalité. Fixons p > 0 et pour

tout m > 2 posons
oo

1
wn= [l 7z Am =t

k=m
de sorte que Amy1/Am = 1 —m™2. On applique alors la majoration précédente avec
A= Amsts N = A, M =m2 Ay

CyHl < CF exp (301/\%;+1m2 2= eXP((Cl)l/Q)\mHmQ?_m))

Am41
noter que CT* > 1). Comme la suite (A,,) est bornée I'inégalité précédente entraine
A g

sup C}y' < oo.
m>1 "
Pour conclure, on remarque que d’apres 'inégalité de Jensen,
>\m
Cp < (CR )PP <,

et donc sup,,>; C;* < oo ce qui termine la preuve puisque p était arbitraire.
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