Continuous Maassen kernels and the inverse oscillator
Séminaire de probabilités de Strasbourg, Tome 30 (1996), pp. 117-161.
@article{SPS_1996__30__117_0,
     author = {Waldenfels, Wilhelm von},
     title = {Continuous {Maassen} kernels and the inverse oscillator},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {117--161},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {30},
     year = {1996},
     zbl = {0856.60068},
     mrnumber = {1459481},
     language = {en},
     url = {http://www.numdam.org/item/SPS_1996__30__117_0/}
}
TY  - JOUR
AU  - Waldenfels, Wilhelm von
TI  - Continuous Maassen kernels and the inverse oscillator
JO  - Séminaire de probabilités de Strasbourg
PY  - 1996
DA  - 1996///
SP  - 117
EP  - 161
VL  - 30
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_1996__30__117_0/
UR  - https://zbmath.org/?q=an%3A0856.60068
UR  - https://www.ams.org/mathscinet-getitem?mr=1459481
LA  - en
ID  - SPS_1996__30__117_0
ER  - 
Waldenfels, Wilhelm von. Continuous Maassen kernels and the inverse oscillator. Séminaire de probabilités de Strasbourg, Tome 30 (1996), pp. 117-161. http://www.numdam.org/item/SPS_1996__30__117_0/

[1] Belavkin, V.P.: A quantum non adapted Ito formula and non stationary evolution in Fock scale. Quantum probability and applications. VI, p. 137-180. World Scientific (Singapore) (1992) | MR 1140634 | Zbl 0937.60045

[2] Glauber, R.J.: Amplifiers, Attenuators and the Quantum Theory of Measurement. In Frontiers in Quantum Optics, ed. by E.R. Pike and S. Sarkar, Vol. X of Malveru Physics Theories (Adam Hilger), Bristol, 1986. | MR 943859

[3] Haake, F., Walls, D.F.: Overdamped and Amplifying Meters in the Quantum Theory of Measurement. Phys. Rev. A. 36 (1987), p. 730-739. | MR 901719

[4] Hepp, K., Lieb, E.H.: Phase Transitions in Reservoirdriven Open Systems with Applications to Lasers and Superconductors. Helv. Phys. Acta. 46 (1973), p. 573-603.

[5] Hudson, R.L., Parthasarathy, K.R.: Construction of Quantum Diffusions. Lecture Notes in Mathematics 1055, Springer (1984), p. 173-205. | MR 782904 | Zbl 0542.60053

[6] Lindsay, J.M.: Quantum and non-causal stochastic calculus. Prob. Theory Relat. Fields 97, (1993), p. 65-80. | Zbl 0794.60052

[7] Lindsay, J.M., Maassen, H.: The Stochastic Calculus of Bose Noise. Preprint, Nijmwegen (1988). | MR 985820

[8] Lindsay, M., Maassen, H.: An Integral Kernel Approach to Noise. Lecture Notes in Mathematics 1303, Springer (1988), p. 192-208. | MR 985820 | Zbl 0652.60068

[9] Maassen, H.: Quantum Markov Processes on Fock Space Described by Integral Kernels. Lecture Notes in Mathematics 1136, Springer (1985), p. 361-374. | MR 819517

[10] Meyer, P.A.: Quantum Probability for Probabilists. Lecture Notes in Mathematics1538, Springer (1993). | MR 1222649 | Zbl 0773.60098

[11] Palma, G.M., Vaglica, A., Leonardi, C., De Oliveira, F.A.M., Knight, P.L.: Effects of Broadband Squeezing on the Quantum Onset of Superradiance. Optics Communications, 79 (1990), p. 377-380.

[12] Robinson, P., Maassen, H.: Quantum Stochastic Calculus and the Dynamical Stark Effect. Reports an Math. Phys. Vol. 30 (1991). | MR 1188395 | Zbl 0756.60102

[13] Waldenfels, W.V.: Spontaneous Light Emission Described by a Quantum Stochastic Differential Equation. Lecture Notes in Mathematics 1136, Springer (1985), p. 515-534. | MR 819530 | Zbl 0569.60059

[14] Waldenfels, W.V.: The Inverse Oscillator in a Heat Bath as a Quantum Stochastic Process. Preprint 630. 1991. SFB 123 (Heidelberg).