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ABSTRACT. A celebrated theorem of Spitzer suggests that the number of windings made

by a planar Brownian motion Z around the origin and taken in the logarithmic time-scale,
is asymptotically close to a Cauchy process. The purpose of this paper is to show that

this informal consideration can be made precise by introducing the Ornstein-Uhlenbeck process

X(t) = This yields short proofs of known results as well as some new features on

the asymptotic behaviour of the winding number (in distribution and pathwise).
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Introduction

Let Z = (Z(t), t > 0) be a complex Brownian motion started away from 0 and
8 = (8(t), t > 0) a continuous version of its argument. The celebrated Theorem of
Spitzer [21], which states the convergence in law of 2~(t)~ log t as t ~ oo towards
the standard Cauchy distribution, is at the origin of numerous works on Brownian

winding numbers. See in particular Le Gall-Yor [12,13], Pitman-Yor [16], Yor [23]
and the references therein for multivariate extensions of Spitzer’s Theorem. The
almost sure asymptotic behaviour of 8 has recently received attention from Bertoin-
Werner [1] and Shi [20]. See also Lyons-McKean [14] and Gruet-Mountford [10] for
related almost sure results.

Loosely speaking, Spitzer’s Theorem suggests that the winding number taken in
the logarithmic time-scale is asymptotically close to a Cauchy process. The purpose
of this paper is to show that this informal consideration can be made precise and
then yields elementary proofs of known results as well as some new information on
9. Specifically, the idea consists of working not directly with Z but rather with the
Ornstein-Uhlenbeck process

(t >- 0).
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Plainly, a continuous version of the argument of X is given by

a(t) = (t ? 0),

which is precisely B taken in the logarithmic time-scale. The key point is that
the Ornstein-Uhlenbeck process is positive recurrent, that is X has an invariant

probability measure. So, Limit Theorems are simpler for X than for Z, which
is null recurrent. This allows us to replace the time-scale t for X by Lt, where
L = (Lt, t > 0) is the local time process of the linear diffusion ~X~2 at level 1. More
precisely, the Ergodic Theorem implies that t - Lt almost surely as t -~ oo. Hence
the asymptotic study of 8 essentially reduces to that of the time-changed process
a o T, where T denotes the right-continuous inverse of L. Finally, it is easy to see
that 2a o T is a Levy process fairly close to a standard Cauchy process, and relevant
informations on its asymptotic behaviour can be deduced from the literature (see
in particular the survey by Fristedt [8]).

This approach should be compared to the elegant proofs of Spitzer’s Theorem by
Williams [22], Durrett [4] and Messulam-Yor [15] which nevertheless are not suited
for studying the almost-sure behaviour of 8. The idea of introducing a positive
recurrent Markov process to simplify the study of Brownian windings appears in
Franchi [7] where a Brownian motion Z on a sphere is used. However the time-
substitution related to the transformation from Z. to Z is random and requires a
careful analysis, whereas ours is deterministic.

We mention that, although the present approach is one of the simplest and most
natural to elucidate the asymptotic behaviour of 8, it does not seem suited for the
study of windings around several points (e.g. Pitman-Yor [16], Franchi [7] and Gruet
[9]). We also point out that time-inversion reduces the asymptotic study as t -~ 0+
of a complex Brownian motion Z’ = (Zt, t > 0) started at Zo = 0, to that of Z
at infinity. In particular, all the results of this paper have analogs for small times;
precise statements are left to the reader. Observe that time-inversion for Brownian
motion simply corresponds to time-reversal for the Ornstein-Uhlenbeck process.

This paper is organized as follows. Section 1 is devoted to preliminaries on the
Ornstein-Uhlenbeck process X. Section 2 contains new proofs of known results and
some new features on the asymptotic behaviour of 8 and related processes.

1. The Ornstein-Uhlenbeck process
Let us first set down some notations. We consider Z = (Z(t~, t > 1) a complex

Brownian motion started at time 1 from Zi === 1. The continuous specification of its
argument which is null at time 1 is denoted by 8 = (8(t), t > 1). Recall that 8 can
be expressed as

e(t) = pAct~ (t >_ 1)

where A(t) = ~1 and /3 = > 0) is a linear Brownian motion started
from ~io = 0 which is independent of the radial component see for instance
Revuz-Yor [18] on page 181. The increasing process A = (A(t), t > 0) is often
refered to as the clock of 8.
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Next we put
X(t) = (t ~ 0)

so that X = (X(t), t > 0) is a complex Ornstein-Uhlenbeck process started at
X(0) = 1; see for instance Revuz-Yor [18] on page 35-36. It is a positive recurrent
diffusion process in the sense of Harris. More precisely, the law of N + iN’ is

its unique invariant probability measure, where N and N’ are two independent
real-valued standard normal variables. We also consider for all t > 0, its radial

component
’ 

R(t) = = [
and the continuous specification of its argument which is null at the origin

a(t) = B( et).

The skew-product decomposition of Z yields readily the skew-product decomposition
of X: 

03B1(t) = 03B2H(t) where H(t) = A(et) = t0 R(s)-2ds (1)

for all t > 0; note that the linear Brownian motion Q is independent of the radial
component R (since it is independent of 

Our next purpose is to describe H as a functional of a Brownian motion,
using Feller’s representation of one-dimensional diffusions (see for instance Rogers-
Williams [19], chapter V-28). It is easy to check using Ito’s formula and Lévy’s
characterization of Brownian motion, that R2 is a diffusion process valued in (0, oo)
with infinitesimal generator

Af(x) = 2x f n(x) + (2 - x) f’(x)

where f E C2(0, oo). Again R2 is a positive recurrent process and its invariant

probability measure is m(dx) (that is the law Now

m is the natural choice for the speed measure and this implies that the scale function
is 

~)=~ ~ t-1et/2dt (x > 0),

so that A Then the process M = s(R2) is a local martingale with
bracket 

We denote by B = (Bt, t > 0) the Brownian motion of Dubins-Schwarz associated
with M, so that M(t) = . The preceding equation can be rewritten as

d(M) = r(B~M>t ) ’ ))dt, (2)

where t : (-oo, oo) --~ (0, oo) is the inverse function of .5.

Finally, we consider i 7 t > 0), the local time process of B at level 0, so that

Lt = (t ~ 0)
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is the local time process of the diffusion R2 at level 1. The right-continuous inverse
of L

Tt = Lu > t}
satisfies

(3)
where a(t) = > t} is the right-continuous inverse of ~. So, using (1), (2)
and (3), we get the key-identity .

H(rt) = . (4)

The total time spent by the Brownian motion B in ( -00,0) on the time-interval
fo~ 

t = / ,

will also play a major role in our approach. We recall that H denotes the "clock" of
a (see (1)) and claim the following Lemma that we will use throughout the paper.

Lemma 1. (i) S = (S(t), t > 0) is a stable subordinator of index 1/2. More precisely,
for every a > 0,

E = exp -t(a/2)1/2 . .
(ii ) For every E > 0, almost surely, for all large enough t

(1-  H(Tt)  (1 + 

and

(1- ~((1 -   (1 + + 

Proof- (i) is well-known (see e.g. exercice 2.17 on page 449 in Revuz-Yor [18]). Let
us rewrite (4) as

H( rt) = S(t) + o+(t) _ o_(t)~ .

where for all t > 0 .

. 

= / JO

0394-(t) = / o a(t) 11B,o}(1- 
Then A+ and A" are two subordinators (e.g. Proposition 2.7 on page 445 in Revuz-
Yor [18]) with finite mean since

E(0+(1)) = 1 2~1 e-tet/2t-1 dt  oo
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and

E(0 (1)) _ - 0 o0 (1- = - 2 1 0 i (1 -  o0

(these calculations follow e.g. from the Ray-Knight Theorem on Brownian local
times, see Revuz-Yor [18] on page 422). Now, the Strong Law of Large Numbers
gives

lim t-10394+/-(t) = E(A+/"(1)) a.s. ,

and
lim t-1 S(t) = oo a.s.

’ ~

This implies the first assertion of (ii) since S - ~-  H o T  S + p+.

Finally, the Ergodic Theorem (or again the Strong Law of Large Numbers) gives

lim = E(r(l)) = 1 a.s.,

and the second assertion of (ii) follows from the first. o

In subsection 2.3, we will also need the following technical Lemma.

Lemma 2. There is a constant k > 0 such that

E(IT(t) - tl3/21  kt3/4

for every t > 0.

Proof. Let t > 0) denote the local time at the level .~ of B, so ~~M~t is the local

time of R2 at level x > 0 and time t. Therefore

(t) = 1/2~0 lg(x)03C3(t)e-x/2dx
(recall that a is the right-continuous inverse of £ = £° and that m(dx) =

is the speed measure of R2). Applying Holder’s inequality, we
get

t13~2) C 1 2 0 00 e x~2E(~~~~x~ - 
But we deduce from the Ray-Knight Theorem (see Revuz-Yor [18] on page 422) that

E(L~~~t~ - t13~2)  4t.5 x
and since js(~) ~ log 

 

for some positive constant k. o
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2. Asymptotic results
We will now use the material developed in the preceding section to deduce

informations on the asymptotic behaviour of the winding number (J and the clock
A. Typically, Lemma 1 shows that the clock H is asymptotically close to the stable
subordinator S. It yields useful bounds for 03B8 and allows us to reduce most studies
to known results on the asymptotic behaviour of the Cauchy process C = 2,Q o S
(however, this approach is not completely successful for the pathwise liminf study,
see the remark at the end of subsection 2.3).

This method applies as well to other functionals such as the number of "very big"
windings 0 which we introduce by analogy with the number of big windings (see
Messulam-Yor [15], Pitman-Yor [16]). Specifically, we put

e(t) = ~ (t > 1)

where the integral is taken in the sense of stochastic integration with respect to the
martingale 8. Plainly,

= /o / , (5)

so that 0 taken in the logarithmic time-scale is the number of big windings made
by the Ornstein-Uhlenbeck process. See also the Appendix.

2.1. Convergence in distribution

First, we study convergence in distribution as t goes to infinity, for which we will

use the symbol ~).

Theorem 1. ~i~ Recall that S(1) has stable (1/2) distribution, and more precisely,
= exp -{(03BB/2)1/2}. We have

A(t) (log t)2 S(1).

(ii) Let C1 denote a standard Cauchy variable, i.e. P(Cl E dx) = + 
We have

28(t) ( ) C .log t °
(iii) Let N be a standard normal variable. We have

o(t) (d) ~N,
(log t)1/2 

- °

where ~2 = t 

The first statement is a classical step in the proof of Spitzer’s Theorem (see e.g.
Durrett [4]), the second is Spitzer’s Theorem and the third should be compared with
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results in Messulam-Yor [15]. We also point out that the argument of the proof
can easily be modified to establish a result of convergence in the sense of finite-
dimensional distributions; recall however that there is no result of convergence in
the sense of Skorokhod of a suitable renormalization of > 0) to a Cauchy
process (see Durrett [5] on page 137).

Proof: (i) is an immediate consequence of Lemma 1 and the identity A(et) = H(t).

(ii) follows since 6(t) ~al and 2S(1)1~2~i1 ~al Cl.
(iii) The skew-product representation (1) and (5) yield

e( et ) d 1{R(s)>1}R(s)-2ds)1/2 JU.
Finally, the Ergodic Theorem implies

lim t-1 /’ = - 1 a.s. (6)

(recall that is the invariant probability measure of R2). o

2.2. "Limsup" results

Now, we turn our attention to the sample path "limsup" results.

Theorem 2. Consider f : (0, oo) - (0, oo), an increasing function. We have: 
’

(t) lim sup A(t) f(t)2 = 0 or ~ a.s.

according as the integral converges or diverges.

( ) lim sup f (t) 
= 0 or oo 

according as the integral ~(tf(t))-1 dt converges or diverges.

(iii) lim sup 0398(t) (2 log t log3 t)1/2 03BA a.s.

where log3 = log log log and 03BA2 = t 

The first two statements rephrase respectively Theorem 3 and 1 of Bertoin-Werner

[1]. The third can be viewed as Khintchine’s Law of the iterated logarithm for
the very big windings number; more precisely, one can also prove an analogue of

Kolmogorov’s test for 0 by the same method.
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Proof of Theorem 2-(J): Recall that S is a stable subordinator with index 1/2. Then
it is known that if g (0, oo) ~ (0, oo) is an increasing function,

lim sup 20142014 = 0 or oo .

according as the integral converges or diverges (see Theorem 11.2 in
Fristedt [8] or Feller [6]). . We conclude by taking = and applying Lemma
1-(ii) and (1). o

Proof of Theorem 2-(m~ Since R and /? are independent, we have, by (5) and (1)

O(~) = , (7)

where / = (~(~),~ > 0) is a linear Brownian motion independent of R. Now (iii)
follows from (6) and the standard law of the iterated logarithm for /. o

The first part of the next Lemma is the key to Theorem 2-(ii). The second

part will be used to study the "liminf~ behaviour. Recall that /? is a Brownian
motion independent of the stable process S, and put =  ~},

Lemma 3. (0, oo) -~ (0, oo) be an increasing function. We have

(,) 
g(t) g(t)

according as the integral ~~ converges or diverges.

t-..oo t-..oo 
° °

according as the integral J~~ diverges or converges.

Proof- (i) The subordinated process Ct = 2~(S’(~)), (t > 0) is a standard Cauchy
process. According to Theorem 11.2 in Fristedt [8], , .

lim sup Ct g(t) = lim sup Ct- g(t) = 0 or ~ a.s.

according as the integral J~ dt / g( t) converges or diverges. So, if the integral
diverges, then = = oo a.s. since

obviously 6 ~ }  2~(5’(~)) for all t.
Assume now that the integral converges, so lim supt~~ Ct/g(t) = 0 a.s. Consider

the point process / = (~, ~ ~ 0)

1s = ~(~),~(6-)  ~ ~(~)}.
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Using the property that the process of the jumps of S is a Poisson point process
and the independence of 03B2 and S, we see that, is a Poisson point process. It then

follows from Lévy’s identity and the property that 2,Q o S is a Cauchy process, that
~y has the same distribution as the process of the absolute value of the jumps of a
Cauchy process. Therefore the charasteristic measure of 03B3 is

n( dx) = 

where c > 0 is some positive constant. We deduce that for every e > 0

Joo 
and thus, a.s., eg(s) for all large enough s. Since

P(S(t))   t} +  t},

it follows that a.s.

lim ing 03B2(S(t)) g(t) = lim inf 03B2(S(t-)) g(t) = 0.

(ii) follows readily from (i) and the observation that the right-continuous inverse 
I

of 03B2 (respectively of S) has the same law as S (respectively as /?). o

Proof of Theorem 2-(ii): According to (1) and Lemma 1-(ii), we have almost surely

t}  

for all large enough t. We conclude applying Lemma 3-(i). o

2.3. "Liminf" results

Finally, we study the "liminf" asymptotic behaviours of the clock A, the supremas
of the winding number 9 and the very big winding number 0. We will first turn our
attention to the study of unilateral supremas, which is the easiest part. Recall the
notation log3 = log log log. .

Theorem 3. We have

(i) lim inf log3 t (log t)2 A(t) = 1/8 a.s.

(ii ) Let f (0, oo) -i (0, oo) be arc increasing function. Then

liminf a.s.

according as the integral f °° (log t)-2dt diverges or converges.
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Ze /: (0) ~) ~ (0, ~) &#x26;e an increasing function. Then

liminf -2014r sup{0(.s), a..?.
~ ~ 

° °

according as the integral ~ f(t)t-1 (log t)-3/2 dt diverges or converges.

Proof’ Recall from Lemma l-(i) that 5’ is a stable subordinator with Laplace
exponent 03BB ~ (03BB/2)1/2. According to Breiman [2], , we have

lim inf t-2 log2 t S(t) = 1/8 a.s.
~2014~00

where log2 = log log. Thus (i) follows from Lemma l-(ii) and from the identity
= ~(e~). On the other hand (ii) follows from Lemma 3-(it) by the same

argument as in the proof of Theorem 2-(it). Finally, we deduce (iii) from (6), (7)
and the integral test of Hirsch [11]. o

The "liminf" behaviour for the maximum of the modulus is specined in Theorem
4. The first part is due to Shi [20] and requires a delicate analysis (which however
is simpler than the calculations of Shi). The second statement is an immediate

consequence of Chung’s law of the iterated logarithm (see Chung [3]) and equations
(6) and (7); we omit the details of its proof.

Theorem 4. t~e ~c~e

(i) lim inf log3 t log t sup{|03B8(s)|, 1 ~ s  t} = 03C0/4 a.s.

(ii) lim inf 

sup{|0398(s)|,1 ~ s ~ t} = 03BA03C02/8 a.s
.

Proof of the lower bound in Theorem 4-(i): It follows from Chung [3] on page 206
that for any continuous increasing process D = (D~ > 0) independent of the
Brownian motion /?, and for every A > 0 and  > 0

 P(sup |03B2s|  03BB)  (8)

see also Lemma 1 in Shi [20]. In particular, for D = R,

P(sup |03B2H(s)| ~ 03BB) ~ 4 03C0E(exp{-03C02 803BB2H(t)}). (9)
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Recall that r denotes the inverse function of the local time of R~ at level 1 and
that = + A+(~) - A"(). Introduce for every e > 0,

= I > 6), 6.M =  A+(~) + A-(~)), (10)

and put, for every integer 11, > 0,

~=(l+.)~dA.=~(l-~. °
We deduce from (9) that

~?( sup !~(.)!~)4 

 + + E (exp {~(1 - 6)~(1 - °

First, we observe that the series ~~ converges. Specifically, Lemma 2 and
Chebyshev’s inequality yield

= I > e)  ~-’/’(1 + 6)-’~,

which proves our assertion.

Then, we check that ~~ converges. Using the existence of continuous
densities for the stable distribution on the one hand, and Chebyshev’s inequality on
the other hand, we get

 ~’’) + P(A+M + > ~) ~ ~-~ (11)

for some positive constant ~ depending on e, which entails our claim.

Finally, we deduce from Lemma l-(i) that .

E (exp {~(l - e)~((l - = exp ~-(1 - ~.~(l - ~)’~}
= 0(~/~/~).

In conclusion, the series (  An) converges. By Borel-
Cantelli’s Lemma and an immediate argument of monotonicity, we obtain

~  .  ~ ~~ .

Proof of the upper bound in Theorem 4-(i): We put now, for every integer n > 0
and ~ > 0

tn = exp(n1+~), 03BBn = 03C0tn 4 log2 tn(1+~)2,
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and we consider the events

Un = ,   A~} . .

Since /? and H o r are two independent processes with independent increments, the
events Un are independent. Moreover, (9) implies that

P(Un) = 6   A.)
>   ~)

~~(~~~~)- ° .

Now recall the notation in (10) and Lemma l-(i). We deduce

~(~) ~ ~ (exp{~-~(.)}) - 
= exp{-(l + ~} - 

On the one hand,

~ exp{ -(1 + 6)-’~ log, = ~ ~-~~/~~ = oo. .
n>0 n>0

On the other hand, we see by (11) that the series converges. Hence

03A3 P(Un) = ~, and since the Un’s are independent, the events Un occur for infinitely
many n’s, almost surely.

All that is needed now is to check that

~~~(r(~))=0 a.s. . (12)

According to the law of the iterated logarithm for /? (remind that /? and are

independent) and to Lemma 1-(ii), we have a.s., for all large enough t

4((l+~)log,~))~. .

On the other hand, we know that a.s. ~  for all large enough t (see e.g.
Theorem 6.1 in Fristedt [8]). In conclusion, a.s.

for all large enough t; (12) follows. o

Remark. Pruitt-Taylor [17] proved that

hm inf sup|Cs == c a.s.
t ~,~~
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for some positive constant c, which does not seem to be known explicitely. It is easy
to deduce that

’ 
a.s.

for some constant c’ ~ c. But showing the result of Shi [20] is more delicate.

Appendix
In this section, we present some comments on the so-called very big winding

numbers, communicated to us by Marc Yor.

In a more general setting, one can consider for every v > 0, the number of 03BD-big
windings

~ = (~>1).

In particular, ~~ coincides with the number of big windings in the sense e.g. of
Messulam-Yor [15]. The case v > 1/2 is degenerate, because the Law of the Iterated
Logarithm implies that ~ then stays constant for all large enough t, a.s. In the

case 0  ~  1/2, 2~ / log t converges in distribution as t 2014~ oo to the law with
characteristic function

A-~(cosh{(l-2~)A})~’~. .
This can be deduced from results in Le Gall-Yor [13], see in particular equation (5.f)
and section 6 there. Similar arguments apply to the study of the number of 03BD-small
windings defined by

~ (~1).

The number of very big windings ~/~ = e appears therefore as a critical case.
Our Limit Theorem l-(iii) can be viewed as a consequence of a general Ergodic
Theorem for Brownian motion which we now state. Let W = (Wu, u > 0) be a
d-dimensional Brownian motion started at 0, and introduce for every s > 1 the
re-scaled process

= (~ ~ 0).

The Wiener measure is invariant for the ergodic shift ~ 2014~ W~B and it follows
that for every functional F > 0 on Wiener space,

lim 1 log t t1 ds s F(W(s)) = E(F(W)) a.s. (13)

This fact has been noticed and used by many authors, amongst whom O. Adelman,
J. Neveu... Applying this result to

1
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yields readily Theorem 1-(iii). Theorem 1-(iii) is related to Proposition 1 in [12]
which follows in this setting from (13) applied to

where ( is a real-valued Brownian motion independent of W. See also exercise (3.20)
on page 400 in [18] for further applications of (13). Finally, we point out that in
our framework, (13) can be rephrased in a more "usual" form using the stationary
Ornstein-Uhlenbeck process Yu = (-00  u  oo). More precisely, we
have the standard Ergodic Theorem

lim 1 t t0G(Y o Ts)ds = E(G(Y)) a.s.,

where the shift Ts is the translation operator and the functional G is specified by
the relation G(Y) = F(W ).

Acknowledgment. We are very grateful to Marc Yor for the comments he made on
the first draft of this work.
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