DIMITAR I. HADJIEV

The first passage problem for generalized Ornstein-Uhlenbeck processes with non-positive jumps

Séminaire de probabilités (Strasbourg), tome 19 (1985), p. 80-90

<http://www.numdam.org/item?id=SPS_1985__19__80_0>
1. Introduction. Let \((\Omega,F,P)\) be a probability space. We consider a cadlag stationary random process \(S_t, t \geq 0\), with independent increments and non-positive jumps

\[\Delta S_t = S_t - S_{t^-} = S_t - \lim_{s \uparrow t} S_s \leq 0, \]

that is defined on this space and satisfies \(S_0 = 0\).

It is well known (\cite{31}) that the characteristic function of \(S_t\) has the form

\[\mathbb{E} \exp(iuS_t) = \exp t(ibu - cu^2 + \int_{(-\infty,0)} F(dx)(e^{iux} - iux.1_{x \geq 1})]], \]

where \(-\infty < b < c \leq 0\), and the Lévy measure \(F(.)\) satisfies

\[\int_{(-\infty,0)} F(dx) 1_{x^2 < 0}. \]

Following Skorokhod (\cite{8}) one can use the analytical continuation of (1.1) to the half-plane \(\text{Re}(iu) > 0\) and obtain the Laplace transform of \(S_t\) by substituting \(u\) instead of \(iu\). Thus, we have

\[\mathbb{E} \exp(uS_t) = \exp t\psi(u), \quad u \geq 0, \]

where

\[\psi(u) = bu + cu^2 + \int_{(-\infty,0)} F(dx)(e^{ux} - iux.1_{x \geq 1}). \]

For arbitrary \(\lambda > 0\) and \(-\infty < x < \infty\) we define the random process \(X_t, t \geq 0\), by the formula

\[X_t = e^{-\lambda t}(x + \int_0^t e^{\lambda v} dS_v), \]

the stochastic integral w.r.t. the semi-martingale \(S\) being understood in the usual sense.

Definition. The random process \(X\) will be called the starting at \(x\) generalized Ornstein-Uhlenbeck process with parameter \(\lambda > 0\).
Certainly, the process \(X \) is characterized by the triplet \((b,c,F(.))\) as well. With \(b = 0, \ c = \frac{1}{2} \) and \(F(.) = 0 \) our definition yields the standard Wiener process \(S \) and the usual Ornstein-Uhlenbeck process \(X \).

Given a real number \(\mu > x \), let us introduce the first passage time

\[
T_{\mu}(x) = \inf \{ t \geq 0 : X_t \geq \mu \}.
\]

As far as \(\Delta X_t = \Delta S_t \leq 0 \), if \(T_{\mu}(x) < \infty \) one gets immediately the equality

\[
X_{T_{\mu}(x)} = \mu.
\]

The purpose of this paper is to determine the distribution of \(T_{\mu}(x), \mu > x \), by means of Laplace transform

\[
\gamma_{\mu}(\theta,x) = E \exp \left(-\theta T_{\mu}(x) \right), \ \theta > 0.
\]

It should be noted that generally speaking, we have no equation for the transition density of \(X \) and the usual Darling-Siegert approach to the first passage problem of diffusion processes ([2]) is not applicable in our case. Our approach is based on martingale techniques and depends essentially on the existence of suitable martingales on the process \(X \) (see Theorem 1 below). Besides the new generality of the explicit representation for \(\gamma_{\mu}(\theta,x) \) (Section 4), this approach gives us in particular the possibility to obtain ones again and in a natural way the interesting result of Novikov ([6]) concerning the first passage times of a stable process \(S \) through one-sided non-linear boundaries. The basic tool in this special case is the suitable time-change (Section 6) that transfers the linear problems for \(X_t, t \geq 0 \), into some non-linear problems for \(S_t, t \geq 0 \), and conversely. We make use of the reconversion in order to give an example of optimal stopping problem that admits a solution in terms of \(T_{\mu}(x) \).

2. The process \(X \). For the next we need to calculate the conditional Laplace transforms of the process \(X \) that was defined in (1.5). Let us introduce the \(\sigma \)-algebras

\[
\mathcal{F}_t^X = \sigma(X_s, 0 \leq s \leq t); \ t \geq 0,
\]

and the functions \(L(u;t,s) = E(\exp(uX_t)|\mathcal{F}_s^X), s < t, u > 0 \).
Since the stochastic integral in (1.5) might be looked at as an integral taken in the sense of convergence in probability ([4]), a simple argument leads to the following result.

Proposition 1. For any $0 \leq s < t$ and $u \geq 0$ one has

\[(2.1) \quad L(u; t, s) = \exp(e^{-\lambda(t-s)}X_s,u + \int_s^t \psi(u,e^{-\lambda(t-v)}) \, dv),\]

Proof. With an arbitrary subdivision $s = t_0 < t_1 < \ldots < t_n = t$, $\varepsilon = \max_{i \leq n} |t_i - t_{i-1}|$ and $Y_t = \int_0^t e^{\lambda v} \, dS_v$, we get

\[
E(\exp(uY_t) | F_s) = \exp(uY_s) \cdot E(\exp(u \int_s^t e^{\lambda v} \, dS_v) | F_s)
\]

\[
= \exp(uY_s) \lim_{\varepsilon \downarrow 0} \prod_{i=1}^n E(\exp(u e^{\lambda(t_i-t_{i-1})} \cdot (S_{t_i} - S_{t_{i-1}})))
\]

\[
= \exp(uY_s) \lim_{\varepsilon \downarrow 0} \prod_{i=1}^n \exp(\psi(u,e^{\lambda(t_i-t_{i-1})})
\]

\[
= \exp(uY_s + \int_s^t \psi(u,e^{\lambda v}) \, dv)
\]

as a consequence of (1.3) and the independent increments property of S.

Now starting with (1.5) we have

\[
L(u; t, s) = \exp(e^{-\lambda t}X_s,u + \int_s^t \psi(u,e^{-\lambda(t-v)}) \, dv)
\]

and the latter obviously implies (2.1).

Corollary 1. The Laplace transform of X_t has the form

\[
E \exp(uX_t) = \exp(e^{-\lambda t}X_s,u + \int_s^t \psi(u,e^{-\lambda(t-v)}) \, dv), \quad u \geq 0.
\]

Corollary 2. The process X is a cadlag Markov process. (Certainly, X has also the strong Markov property.)

3. The martingale M. We are going to introduce a martingale $M_t(\theta)$, $t \geq 0$, depending on the process X trajectories. To this end, one observes that because of (1.2) the quantity $F[-1,-z]$ is finite for every z, $0 < z \leq 1$. Thus, the measure
\[G(dz) = F[-1,-z] \, dz \]
on \((0, 1]\) is well defined. We need the following assumption.

Hypothesis G. Either \(c > 0\) or the measure \(G(.)\) satisfies the condition

\[\lim_{z \to 0^+} z^\kappa G(z,1) = C > 0 \]
for some constant \(\kappa, \ 0 < \kappa < 1.\)

Next, one defines successively

\[g(y) = -\frac{y}{\lambda} \psi(u) \, du, \quad y > 0, \]
and

\[M_t(b) = e^{-\theta t} \int_{\lambda b}^{\lambda b-1} \exp\{X_t y + g(y)\} \, dy, \quad t \geq 0. \]

The next statement is crucial because it permits an essential use of the martingale theory later on.

Theorem 1. Under the hypothesis G for any positive \(\theta\) the random process \(M_t(b)\), \(t \geq 0\), is a martingale w.r.t. \(F^X_t\), \(t \geq 0\).

Proof. First, we observe that our hypothesis G implies the convergence of the integral in (3.3). In fact, we have

\[g(y) = -\frac{b}{\lambda} (y - 1) - \frac{c}{2\lambda} (y^2 - 1) - \frac{1}{\lambda} g_1(y) - \frac{1}{\lambda} g_2(y), \]
where

\[g_1(y) = \int_{\lambda}^{\lambda b} \psi_1(u) \, du, \quad g_2(y) = \int_{\lambda}^{\lambda b} \psi_2(u) \, du \]
and

\[\psi_1(u) = \int_{-\infty}^{0} F(dx) (e^{ux} - 1), \psi_2(u) = \int_{[1,0]} F(dx) (e^{ux} - 1 - ux), \quad u \geq 0. \]

The convergence of the integral at \(y = 0\) is obvious, because \(\lim_{y \to 0} g(y) = -\infty.\)

Now let us denote \(d_1 = \int_{(-\infty,0]} F(dx) \geq 0, \ d_2 = \int_{[0,1]} F(dx) \, x^2 \geq 0.\) In consequence of (1.2) one gets \(0 \leq d_1 + d_2 < \infty.\) Our function \(\psi_1\) satisfies \(0 \leq \frac{\psi_1(u)}{u} + d_1\) and \(0 \geq \frac{\psi_1'(u)}{u} + 0\) as \(u \to \infty.\) This means that \(\frac{\sqrt{y}}{2} \leq \int_1^{y} \psi_2(u) \, du \leq d_1 \ln y.\) On the other hand \(0 < e^{ux} - 1 - ux \leq u \, x^2, \quad u > 0, -1 \leq x < 0,\) and in this way one obtains the inequalities \(0 \leq \frac{\psi_2(u)}{u} \leq \frac{u}{2}; \ d_2 < \infty; \) and \(0 \leq g_2(y) \leq d_2 (y^2 - 1).\)
If $c > 0$, the corresponding term $-\frac{c}{2\lambda} (y^2 - 1)$ in $g(y)$ ensures the convergence. If $c = 0$, by the equality $\frac{\psi_2(u)}{u} = \int_0^1 (1 - e^{-uz}) G(dz)$, where obviously $0 \leq \int_0^1 z G(dz) = \frac{\lambda}{2} < \infty$, the hypothesis (3.1) and the corollary of Theorem 4.15 in [1] one gets $\lim_{u \to \infty} u^{-\frac{1}{2}} \psi_2(u) \geq C \Gamma(1 - \kappa) > 0$. Consequently, $\frac{\psi_2(u)}{u} \geq C_u u^\kappa$ for any C_u belonging to the interval $(0, C \Gamma(1 - \kappa))$ and $u \geq u_2(C_2) > 0$ (sufficiently large). This implies $g_2(y) \geq C_2 y^{1+\kappa} + C_1$, $y > u_2(C_2)$, and the convergence of our integral too.

Secondly, applying Fubini's lemma and (2.1) for $0 \leq s \leq t$ (and with $z = ye^{-\lambda(t-s)}$) we get

$$
E(M_t(\theta) \mid F_s) = e^{-\theta t} \int_0^t y^{-\frac{\lambda}{2}} -1 E(\exp(X_t.y + g(y)) \mid F_s) dy
$$

$$
= e^{-\theta s} \int_0^t y^{-\frac{\lambda}{2}} -1 \exp(g(y) - \theta(t-s) + e^{-\lambda(t-s)} y X_s + \psi(ye^{-\lambda(t-s)})) dy
$$

$$
= e^{-\theta s} \int_0^t z^{-\frac{\lambda}{2}} -1 \exp(z X_s + g(z e^{-\lambda(t-s)})) dy.
$$

But the function $f(u,z) = g(z e^{\lambda u}) + \int_0^u \psi(z e^{\lambda v}) dv$, $u \geq 0$, satisfies the condition

$$
\frac{\partial f(u,z)}{\partial u} = g'(z e^{\lambda u}) \cdot z e^{\lambda u} + \psi(z e^{\lambda u}) = g'(y) \cdot \lambda y + \psi(y) = 0
$$

with $y = z e^{\lambda u}$, in view of (3.2). Therefore,

$$
f(u,z) = \text{const} = f(0,z) = g(z)
$$

and we get $E(M_t(\theta) \mid F_s) = X_s$, that completes the proof.

Remark 1. We emphasize the fact that Theorem 1 is valid for every process $\{X_t\}$ with S containing a Gaussian component ($c > 0$). If the process S has no Gaussian component ($c = 0$), the condition (3.1) is nevertheless fulfilled for a class of measures $F(.)$ that includes the stable processes S with parameter α satisfying $1 < \alpha < 2$. Because of its importance, we consider this special case in Section 5.

4. The Laplace transform of $T_\mu(x)$. Now we are in a position to derive an explicit expression for the Laplace transform $\gamma_\mu(\theta,x)$. Due to the particular structure of
the martingale $M(t)$ we have the following result.

Theorem 2. Under the hypothesis G the next equality holds:

$$
\gamma_\mu (\theta, x) = \frac{\int_0^{y_\lambda} \exp(xy + g(y)) \, dy}{\int_0^{y_\lambda} \exp(\mu y + g(y)) \, dy}, \quad \theta > 0.
$$

Proof. We put $T_\mu (x)\Delta t$ instead of t in (3.3) and we make use of the well known martingale property that

$$
E M_{T_\mu (x)\Delta t} (\theta) = E M_\theta (\theta) = \int_0^{y_\lambda} \exp(xy + g(y)) \, dy.
$$

Next, one observes that

$$
0 \leq M_{T_\mu (x)\Delta t} (\theta) \leq \int_0^{y_\lambda} \exp(\mu y + g(y)) \, dy
$$

and, moreover, when $T_\mu (x) = \infty$ then

$$
0 \leq M_{T_\mu (x)\Delta t} (\theta) = M_\theta (\theta) \leq e^{-\theta t} \int_0^{y_\lambda} \exp(\mu y + g(y)) \, dy
$$

as well. Therefore,

$$
\lim_{t \to \infty} E M_{T_\mu (x)\Delta t} (\theta) = E M_{T_\mu (x)} (\theta) \cdot 1_{\{T_\mu (x) < \infty\}} = \int_0^{y_\lambda} \exp(\mu y + g(y)) \, dy, \quad \gamma_\mu (\theta, x).
$$

The right-hand sides of our equalities give directly (4.1).

Remark 2. For the validity of Theorem 2 we need not (and we did not use) any fact about the finiteness of $T_\mu (x)$. It is well known that $T_\mu (x) < \infty$ P-a.s. if and only if

$$
\lim_{y \to 0} g(y) = \infty
$$

or when

$$
\int_{y \to 0} F(dx) \cdot |x| < \infty.
$$

5. The case of stable process S with parameter $1 < \alpha < 2$. Now we turn to the particular case when the following hypothesis is satisfied.

Hypothesis H_α. Either $F(.) = 0$ and $c > 0$ (we characterize this by posing $\alpha = 2$),

or $c = 0$ and $F(dx) = \frac{\sigma \cdot dx}{|x|^{\alpha+1}} \cdot 1_{\{x < 0\}}$ for some $\sigma > 0$ and $1 < \alpha < 2$.

Using standard arguments (see [8], §25, Theorem 4) one obtains the equivalent form of H_α in the terms of our function $\psi : H_\alpha, 1 < \alpha < 2$, means that

$$
(5.1) \quad \psi(u) = \frac{\overline{\psi}(u)}{u} = E \psi + \overline{\psi} u^\alpha
$$
with some δ, $-\infty < \delta < \infty$, and $\sigma > 0$. In this situation by (3.2) we get

$$g(y) = \bar{g}(y) = -\frac{\delta}{\lambda} (y - 1) - \frac{\sigma}{a\lambda} (y^a - 1),$$

and the martingale $M(t)$ is well defined via (3.3).

Following Novikov we introduce the function

$$H(\nu, \alpha, x) = \frac{1}{\Gamma(-a\nu)} \int_0^\infty y^{-a\nu - 1} \exp(xy - \frac{1}{\alpha} y^\alpha) \, dy,$$

which turns to be analytic in the half-plane $\text{Re} \, \nu < 1$. All the essential properties of $H(\nu, \alpha, x)$ are collected in the supplement of [6].

Next we obtain a special case of Theorem 2.

Proposition 2. Under the hypothesis H_α, $1 < \alpha \leq 2$, the following equality holds for $\theta > 0$:

$$g(\theta, x) = H(-\theta, \alpha, x) = H(-\theta \alpha, \alpha, x)$$

Moreover, this formula defines also an analytical continuation of the Laplace transform $g(\theta, x)$ to the half-plane $\text{Re} \, \theta > -\alpha \nu_a(\mu)$, where $\nu_a(\mu) = (\frac{1}{\alpha}) \nu_a(\mu - \frac{\delta}{\lambda})$ and $\nu_a(\mu)$ is the smallest positive zero of $H(\nu, \alpha, \mu)$ with (α, μ) fixed.

Proof. Applying the change of variables $y = (\frac{1}{\alpha}) \mu z$ we see the formula (5.3) is another form of (4.1) for $\theta > 0$. As far as the right-hand side of (5.3) is analytic in θ in the half-plane $\text{Re} \, \theta > -\nu_a(\mu)$ (see [6]), the left-hand side can be analytically continued in θ to this half-plane.

Corollary 3. Since $\lim_{\nu \to 0} H(\nu, \alpha, x) = 1$, $-\infty < x < \infty$, under the hypothesis H_α we get $\lim_{\nu \to 0} g(\theta, x) = 1$ and, consequently, $T(\nu, x) < \infty$ P-a.s.

6. The time change - two applications. Throughout this section we suppose the hypothesis H_α holds with some α, $1 < \alpha \leq 2$, and $\delta = 0$ (see (5.1)). As a consequence we have

$$\psi(u) = \psi(u) = \frac{\sigma}{\alpha} u^\alpha, 1 < \alpha \leq 2,$$

and the process X is stationary too (see (2.1)).
Let us introduce the real (increasing and continuous) function
\[\delta(t) = (a\lambda)^{-1}(e^{a\lambda t} - 1), \quad t \geq 0, \]
which determines an one-to-one mapping of \([0,\infty)\) onto \([0,\infty)\), and the converse function
\[\rho(t) = (a\lambda)^{-1}\ln(1 + a\lambda t), \quad t \geq 0. \]

Lemma 1. The distributions of \(S_t, t \geq 0, \) and of \(\frac{\rho(t)}{\rho'(t)} \int_0^t e^{\lambda t} dS_t, \quad t \geq 0, \) coincide.

Proof. As in Proposition 1 one calculates
\[E \exp(\rho(t)) = E \exp(\rho'(t)) = \exp(\rho(t)) = \exp(\mu \alpha \delta(t)), \quad u > 0. \]
But under the hypothesis stated \((H_a \text{ and } E = 0)\) the latter term is just \(E \exp(\mu \alpha \delta(t)) \).

The lemma is proved.

Now for any constants \(a, b \) and \(c \) such that \(b \geq 0 \) and \(ab + c > 0 \), define the stopping time \(\tau(a,b,c) \) w.r.t. \(F_t, t \geq 0, \) by the formula
\[\tau(a,b,c) = \inf \{t > 0 : t \leq a(t + b)a + c\} \]
and pose
\[\tau(\mu)(x) = \tau(\mu(\alpha a), (a\lambda)^{-1}, -x), \quad \mu > x. \]

The following simple fact is valid in our situation.

Theorem 3. The stopping time \(\tau(\mu)(x) \) has the same distribution as \(\rho(\tau(\mu)(x)) \) does.

Proof. We define similarly \(\tau(a,b,c) \) and \(\tau(\mu)(x) \) by replacing \(S_t \) by \(S^t \) in (6.1) and (6.2). Next, starting with (1.6), we calculate
\[\tau(\mu)(x) = \inf \{t : x + y_t \geq e^{\lambda t}\} \]
\[= \inf \{s : y_s \geq e^{\lambda s} - x\} \]
\[= \inf \{s : S_s \geq (1 + \lambda s)x\} = \rho(\tau(\mu)(x)). \]

The statement of the theorem follows from Lemma 1 which says the distribution of \(\tau(\mu)(x) \) coincides with the distribution of \(\tau(\mu)(x) \).

From Theorem 3 and Proposition 2 we deduce the following result of A.Novikov
Theorem 4. For every a, b, c with $b > 0$, $ab^2 + c > 0$, one has

\begin{equation}
(6.3) \quad E (\tau(a, b, c) + b)^\nu = \frac{b^\nu H(\nu, a, -cb^{-\frac{1}{\alpha}}d)}{H(\nu, a, ad)} , \quad \text{if } b > 0 \text{ and } \nu < \nu_a(ad),
\end{equation}

and

\begin{equation}
(6.4) \quad E (\tau(a, b, c)^\nu) = \begin{cases}
\frac{\nu^\nu}{H(\nu, a, ad)} & \text{if } \nu < \nu_a(ad), \\
+\infty & \text{if } \nu \geq \nu_a(ad),
\end{cases}
\end{equation}

where $d = (\frac{1}{ad})^{\frac{1}{\alpha}}$.

Proof. Assume $b > 0$ and put $x = -c$, $\lambda = (ab)^{-1}$, $\mu = ab^{-\frac{1}{\alpha}}$. Then

\begin{equation}
\mu - x = ab^2 + c > 0, \quad \bar{\mu} = (\frac{1}{a})^{\frac{1}{\alpha}} = ad
\end{equation}

and by Proposition 2 with $\nu = -\frac{\mu}{\alpha \lambda}$ we get the equalities

\begin{align*}
E (\tau(a, b, c) + b)^\nu &= E (\tau(x) + \frac{1}{\alpha \lambda})^\nu \\
 &= b^\nu E (\alpha \lambda \tau(x) + 1)^\nu = b^\nu \exp\{\nu \ln(1 + \alpha \lambda \tau(x))\} \\
 &= b^\nu \exp(-\theta(\tau(x))) = \frac{b^\nu H(\nu, a, -cb^{-\frac{1}{\alpha}}d)}{H(\nu, a, ad)}
\end{align*}

provided that $\theta > -\alpha \lambda \nu_a(ad)$ (or $\nu < \nu_a(ad)$). The rest statements of the theorem follow from the properties of $H(\nu, a, x)$, the case $b = 0$ being taken into account by letting $b \to 0$ (or $\lambda \to +\infty$).

Remark 3. In the original theorem of Novikov (with $d = 1$, see [6]) one makes use of the fact that

\begin{equation}
(t + b)^\nu . H(\nu, a, \frac{S_t - b^2}{1}), \quad t \geq 0, \quad b > 0,
\end{equation}

is a complex-valued martingale (w.r.t. F^S_t, $t \geq 0$) for every complex ν with $\text{Re} \nu < 1$.

This fact involves an analytical continuation in contrast to our Theorem 1.

As a second example we consider an optimal stopping problem originally treated in more general setting in [5], [7] and [9]. This problem admits a simple solution in terms of stopping times $T_{\mu}(x)$.
Under the hypothesis stated at the beginning of this section \(H_a \) and \(\bar{b} = 0 \) the quantity

\[
(6.5) \quad v(x,b,\tau) = E \frac{x + S_T}{b + T}, \quad b > 0, \quad -\infty < x < \infty,
\]
is to be maximized on stopping times \(\tau = \tau(\omega) \) w.r.t. \(F^S_t, t \geq 0 \).

By Lemma 1 we have

\[
v(x,b,\tau) = v(x,b,\tau) = E \frac{x + S_T}{b + T},
\]
using \(S_T = Y, t \geq 0, \) and \(\tau \) in the place of \(S_T, t \geq 0, \) and \(\tau \). Now taking

\[
\lambda = \frac{1}{ab} \quad \text{and} \quad t = \delta(s), \quad s \geq 0,
\]
we get

\[
\frac{x + S_T}{b + T} = \frac{x + Y_{\rho(t)}}{b + t} = \frac{e^{\lambda_0(t)}X_{\rho(t)}}{e^{\lambda t}e^{\alpha_0 s}} = \alpha e^{-(a - 1)\lambda s}X_s.
\]

Consequently, it is equivalent to consider the problem of maximizing the quantity

\[
(6.6) \quad V(x,b,T) = \frac{1}{b} E e^{-sT}X_T, \quad s = \frac{a - 1}{ab} > 0,
\]
on stopping times \(T = T(\omega) \) w.r.t. \(F^X_s, s \geq 0, \) provided that \(T = \rho(\tau) \), because

\[
V(x,b,T) = v(x,\tau).
\]

By [7] for \(a = 2 \) and [5] for \(1 < a < 2 \) one knows the solution of the original problem of maximizing (6.5) is one of the stopping times \(\tau(a,b,-x) \) or the stopping time \(\tau_0 = 0 \).

Let us denote

\[
\bar{\psi}(\mu) = \begin{cases} \int_{-\infty}^{0} \frac{y^{a-2} \exp(\mu y - \bar{b}y^a)}{0} dy, \quad \mu < \infty, \\ \int_{0}^{\infty} \frac{y^{a-1} \exp(\mu y - \bar{b}y^a)}{0} dy, \quad \mu > \infty. \end{cases}
\]

As far as \(\bar{\psi}(\mu) \) is positive, decreasing and continuous and \(\bar{\psi}(0) = \Gamma \left(\frac{a-1}{a} \right) > 0 \), the equation \(\mu = \bar{\psi}(\mu) \) has a unique solution \(\bar{\mu} \) (moreover, \(0 < \bar{\mu} < \bar{\psi}(0) \)). The corresponding result in our case is given below without proof because it can be justified as in [5] and [7] (see also [9], Example 2, for the case \(a = 2 \) and \(\lambda = 1 \)).

Theorem 5. For every real \(x \) and \(b > 0 \), either the stopping time \(T_x(x) \), or the stopping time \(T_x(x) = 0 \) maximizes the quantity (6.6). More precisely,
\[
\sup_T V(x,b,T) = V(x,b,T_\bar{u}) = \frac{\bar{u}}{b} \psi(\bar{u},x) \quad \text{if} \quad x \leq \bar{u},
\]

and
\[
\sup_T V(x,b,T) = V(x,b,0) = \frac{x}{b} \quad \text{if} \quad x > \bar{u}.
\]

Acknowledgement. I would like to express my gratitude to Jean Jacod for his kind attention and the helpful discussions on the subject.

References