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Williams’ characterisation of the Brownian excursion law: proof and

applications

by

L.C.G. ROGERS

University College of Swansea

1. Introduction.

Let {continuous functions from [0,oo) to Kt}, let -~ JR

be the mapping ~a I~ ~(t), let ~ 0 - s - t}) with 6({Xs ; ~ s ? 0}),

and let M ((jo) = max{X ((D) ; ; 0~st}.

Let P be Wiener measure on (Qo,]o); then P(Xo = 0) = 1, and there

exists 0, E 3o with = 1 and such that for all w E S~, for all t ? 0,

the limit

(1) lim N(t,~,03C9) ~ Lt(w)

exists, defining a continuous function of t. Here, N(t,e:,w) is

the number of Ik(w) contained in (0,t) and of length at least e, where

w

{t ; ; H} = u 

k=1

is a representation of the set K(w) as a disjoint countable union of open

intervals (for the existence of such an S~, and other properties of L see,

for example, Williams [8] ). Henceforth we restrict our 03C3-fields

to 03A9 , writing the restrictions as 3, 3t.

The normalisation of local time we have made here has been chosen so that

the remarkable distributional identity:

D

(2) (IXt I Lt) = (Mt - Xt, Mt)
is valid.
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In recent years, a number of papers have appeared dealing with the

distributions of T, and J~, where T is an (7 )-optional time of the form:
T = inf{t ; ~ (Bt, )It) E A}

for some (closed) subset A of Ht2. (See Azema-Yor [1], Jeulin-Yor [3],

Knight [4], , Lehoczky [5], Taylor [7], , and Williams [9]). . Various approaches

have been adopted by these authors ; the aim of this paper is to show that Ito’s

excursion theory provides a natural setting for these problems, and that the

explicit characterisation of the Brownian excursion law due to Williams [10]

turns this natural way of considering the problems into a powerful method for

solving them. No proof of this characterisation of the Brownian excursion law

has yet appeared, so we devote section 3 of this paper to a proof using the path

decompositions of Williams. In section 2 we see how the Azema-Yor proof of the

Skorokhod embedding theorem can be quickly established using ideas from excursion

theory, and finally in section 4 we use the result of section 3 to solve the

problem dealt with by Jeulin and Yor of finding a method of calculating

E exp{ - a(xS’ b(Xt’ L t) dt - SGS c(Xt’ 

where a, b, c are any measurable functions from B2 to R+,
(3) sup{st ; ; Xs = 0},
and

(4) S - ~ + = 1};

here, h, k : R ~ R are measurable, and Xt = (Xt) v 0 ~ Xt + Xt.
We conclude this section by setting up the notation to be used for the rest

of the paper.

Let U+ _ (f E 3 0  ~  «o with f(t) >0 on (0,~), f(t) = 0 otherwise}

(f E E U*’},
U = U u U .

For f E U, let 03B6(f) _ sup{t ; ; f(t) ~ 0},

max{f(t) ; ; t ~ 0} if f ~ U+
m(f) ~{

min{f(t) ; t ~ 0} if f ~ U-
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Equipping U with the topology of uniform convergence on compact sets makes U

into a Polish space; let Ll denote its Borel 03C3-field.

Now it is a central idea of the historic paper by Ito [2] that there exists

a 03C3-finite measure n on U, satisfying

(5) - !u j 
such that, from a Poisson process on R x U with measure dtxdn one can

synthesize the original process X, and, conversely, by breaking the set

into its components and considering the excursions of X during

these intervals, one can construct a Poisson process on R+ In more detail,

if c~ E S~, define for each t > 0

(6) Qt(~a) = inf{u ; > t},

and use J(cj) to denote the (countable) set of discontinuities of t ~ 

For t E J((o), let ft denote the element of U defined by

ft(s) = + s) 0 _ s _ 

= 0 otherwise.

Then {(t,ft) ; t E J((u)} is a realisation of a Poisson point process on R x U

with measure dt x dn; in.particular, defining for each measurable subset A

of the Polish space R x U, the random variable:

N(A) _ number of t E for which (t,ft) E A,

then if A1,...,Ak are disjoint, N(A1),...,N(Ak) are independent Poisson random

variables with parameters:

E N(A ) = Ai 
dt x dn.

In what follows, we will freely switch from considering the process X as a

continuous function of real time to considering it as a point process in local

time.

2. The Skorokhod embedding theorem.

We begin this section with a simple lemma, which can be deduced from Williams’
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characterisation of n, the Brownian excursion law, but which we here prove

directly.

Lemma 2.1.

n({f E U ; ; ~m(f) ~ I > x}) =x 
1 

for each x > 0.

Proof.

9

Bearing in mind that ( I Xt I Lt) _ (M -X Mt), , and fixing x > 0, we see

that if

p E inf{s ; ; M - X > x},

then M 
P 

is exponentially distributed with rate n({f ;Im(f)I>x}). . An

application of Ito’s formula tells us that for each 6 > 0,

Z03B8t ~ 
e-03B8Mt 

(Mt - Bt + 03B8 -1) is a local martingale.

But Z~ is bounded on [O,p], and using the optional sampling theorem at p

proves that M is exponential, rate x 1.

Now let p be a probability measure on IR satisfying

t p(dt) = 0.

Azéma and Yor define a left continuous non-negative increasing function

Y : by

(7) = if u (x) > 0

= x if jj’(x) = 0,

where p(x) = they remark that x Vx,

= x ~ ~Y(y) - y Vy > x, and lim Y(x) = 0.

Now define

(8) T - ~ Mt >_ 

Theorem (Skorokhodj Azéma-Yor).

The optional time T is finite a.s., and the law of XT is p. Moreover,
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if p possesses a finite second moment, then E T = f t 2 p(dt).

Proof.

We leave the proof of the last assertion aside until Section 4.

Define the right continuous inverse $ to 03C8 by

inf{y ; ; ~(y) > x},

and notice that, with this definition,

T = ~ ~(Mt) >_ Xt}.

Since XT = when T  °o, it is enough to find the law of MT. . We make

the convention that MT if T = °o.

Now look at Fig. 1 and think in terms of excursions. A sample path of

(Xt,Mt) in consists of a (countable) family of horizontal "spikes"

(corresponding to excursions of X below its maximum) with their right-hand

end-points on the line x = y. The time T occurs when one of these spikes

goes far enough to the left to enter the shaded set, {(x,y) ; ; y > ~(x)}. If
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we fix m > 0, then m ~=?> no excursion of M-X during the local time

interval F0,m) has maximum greater than or equal to where u is

the local time at which the excursion occurs. But this latter event occurs

iff the Poisson process of excursions puts no point into the set

D E {(u,f) ; j 0 ~ u  m, ) 
Now the number of excursions in D is a Poisson random variable with mean

dtxdn = ~0 dt (t- 
by Lemma 2.1. So

= P (no excursions in D)

(9)"’ 
= exp[ - f dt (t-Kt)) ].

If we make the simplifying assumption that V is continuous and strictly

increasing, then, as X- = when T  co, for x  sup{t ; ; p(t) > 0},

P(T =eo, or X~>x) = > $(x))

(10) °

But, by the definition (7) of V, for s  sup{t ; ; p(t) >0},

(11) V(ds)=~~~ (~(s)-s), ’

which we put into (10) and deduce that for x  sup(t ; p(t) >0},

P(T = oo, or °

Now let ; p(t) >0} to learn that P(T = ~) = 0, and P(X>x) = ii (x) . .

To handle general the jumps of V must be accounted for separately

from the continuous part. The details are not difficult, and are left to the

reader.

Pierre [63 gives a proof of this point in the spirit of the original paper

by Azéma and Yor.
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3. Williams’ characterisation of the Brownian excursion law.

Informally, Williams’ [10J characterisation of the Brownian excursion law

says this ; pick the maximum of the excursion according to the "density" x dx,
and then make up the excursion by running an independent BESo(3) process

until it reaches the maximum, and then run a second (independent) BESo(3)

process down from the maximum until it hits zero. We shall here treat the

excursion measure of , which is only trivially different from the case

treated by Williams, that of the excursion measure of .

In more detail, set up on a suitable probability triple (~’,3’,P’) the

independent processes

(i) BES o (3) process,

(ii) (Rt)t>0’ , another BES°(3) process. . _

Define for each x > 0 T x (R) 5 inf{s ; ; Rs > x}, TR(~) _ > x}. Now

for each x >0 define the process by

~ Rt , ’

Zt - x - R(t - Tx(R) ) , , + T x (R),(~ 0 
, T (R) + 

For x  0, set (t ? 0), and define the kernel from

RB{0} to U by

= P’(Zf E A) (x E BB{0}, A E u).

(It is plain that for each x, is a probability measure on 

and to prove the measurability of (n)m)(.,A), notice that (x Z1tx-2) t>0
so t U ~ IR is bounded continuous, the map x ~ (n|m)(x.df) 03A6(f) is

continuous, and measurability of (nlm)(e,A) follows by a standard monotone

class argument). The kernel (nlm) provides a regular conditional n-distribution

for the excursion given its maximum.
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Theorem 3.1. (Williams)

The Brownian excursion law is the a-finite measure n on (U,~l) defined

by

n(A) = 1 2IRB{0} x-2(n|m)(x,A) dx

(12)

= ~]RB{0} (dx) (nlm) (x,A) .

The rest of this section is devoted to the proof.

We begin by reviewing briefly some results on random measures which we

shall use. Let A! denote the set of a-f inite measures v on ( R+ x U, ~( R+) x ~/)

with values in ?L+ u satisfying the condition

(13) 1 

We equip j~ with the smallest a-field for which all the maps

B; ~ v (E) (E E x ~)

are measurable. There is a natural 1-1 correspondence between M and the

’ 

A

space of point functions considered by Ito [2] . . We shall if need be phrase

statements in point function language, but generally the statements in terms

of M are cleaner. For each t >_ 0 def ine the map 8 t : by

at (s,f) =(t+s,f). A random measure is a random element N of we say

N is renewal if for all N o 03B8-1t is independent of the restriction ’

of N to [O,t) x U and has the same law as N. Ito proved that every

renewal random measure for which the measure A ~ EN(A) is a-finite is a

Poisson random measure, and conversely (a random measure N is a Poisson

random measure if there exists a a-finite measure A - the characteristic

measure - on (U,U) such that

(i) N(A) is Poisson with mean ~A dt x da, A E x U;

(ii) if A1,...,AE are disjoint measurable subsets of R x U, then

N(A1),..., N(Ak) are independent. ). °

We now give a careful construction of the map 03A6 : (03A9, J) ~
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which was outlined in the Introduction. Fix n E ~1, and consider the

(7 )-optional times

po = 0, pk+1 - |Xt| ( - n 1 }

(14) (k = 0,1,2,...)

00 = 0, ak+1 - Xt ~ } .

The map 03A6n: (03A9, J) ~ (M,B(M)) takes 03C9 to the measure which puts mass 1

on each of the points 1,2,..., where

.~k = L P~
(15) 

=0 

using pk to denote sup{t pk ; Xt = 0}.

The measure ~(w) is defined by

(16) ~(c~) (A) = A E ~J(~+) 

Proposition 3.2.

The map ~ : (S~, 3) -~ ( M, ~(M) ) is measurable.

Proof.

It is plainly enough to establish measurability of each $ , and to prove

that each 03A6n maps into M. The latter follows from the fact that the set of

points of increase of is the zero set of X(03C9) for all 03C9 ~ 03A9, and to

prove the former, it is enough to prove that the probability measure putting

mass 1 at the point is measurable. The 03C3-field on U is the

product 03C3-field, so it is enough to prove measurability fk separately.

Measurability of lk is immediate; as for f if we fix a > 0 and t >0

and note that

{f, (t) >a}=uuuunA , ,k 
m=1 r=1 j=1 s=1 03C1~Q 

mrjs03C1

where
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Amrjs03C1 = 03A9 if 03C1  [j 2-r + t, (j+1)2-r+t]

- 

nk E C~ 2 r, (J+1)2 r), 

and (~+1)2 r  x  (~+1)2 r + t} > s 1} otherwise,

is in ?, then this proves fk to be measurable.

Remarks. 

(a) By the properties of L, it is easy to see that E M always

satisf ies the condition

(17) Qt ~(f) is a strictly increasing finite-valued

function of t.

Later in this section we shall give a sort of converse to Proposition 3.2 ~ ;

we shall prove that there is a subset Mo of M and a measurable

function 03C8: M ~ 03A9 such that 03A6(03A9) ~ M, 03A6(03C9) = w for all w E 03A9.
o o

In other words, not only is it true that the Brownian path can

be decomposed into its excursions from zero, but also, given a Poisson process

of excursions with measure n, one can synthesize a Brownian motion from them.

(b) By the strong Markov property of X and the fact that the points of increase

of L form the zero set of X, the random measure ~(X) is renewal, and the

03C3-finfteness of A ~ E is immediate, so 03A6(X) is a Poisson random

measure. Thus the existence of the Brownian excursion law n is not in

question - nor is its uniqueness!

As stated in the Introduction, we are going to use the path decompositions

of Williams C8] to prove the characterisation of n, which will follow from

Theorem 3.4 and Proposition 3.3. Firstly, we give an obvious characterisation

of n which we shall prove equivalent to the result stated.
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Proposition 3.3.

Fix a > 0, and set up on a suitable probability triple the independent

processes

(i) , a Brownian motion started at 0;

(ii) (~t)t>0’ , a Brownian motion started at a and stopped when it hits 0.

Let T = inf{u ; ; Bu = a}, n E sup{t  T ; ; Bt = 0} and define the process Z by

Zt = Bn+t 0  t  T_n

- ~t - T+n 
The process Z is a random element of U, whose law is the restriction of n to

U = {f E U ; m(f) >_ a},

normalised to be a probability measure.

Proof.

If we restrict 03A6(X) to , we observe a discrete Poisson process

whose points come at rate n(U ) and are i.i.d. with law The

law of Z is nothing other than the law of the first excursion of X with

maximum greater than or equal to a.

We now turn to the path decompositions of Williams [8]. The following

result is a slight extension of Theorem 2.4 in that paper.

Theorem 3.4 (Williams).

Let {Xt; ; be a regular diffusion on (A,B) with infinitesimal

generator g satisfying the conditions

(i) Xo = b E (A,B);

(ii) the scale function s of X satisfies

s (A) = -~, s (B)  ~;

(iii) Z; = ~ Xt - B} a.s..
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Then, defining

(18) Y - inf{Xt ; ; 0 - t  ~}, 
.

there exists a.s. a unique p such that X = y. The law of y is

(19) P(03B3  x) = 
s(B) - s(b) s(B) - s(x) 

(x ~ b)

and conditional on y, the processes {Xt ; ; 0 - t  p } and {Xt+ ; ; 0  t  

are independent; the law of the pre -p process is that of a diffusion in (A,B)

with generator

(20) rg(B) - s] 1 ~ [s(B) - s]
started at b and stopped at Y, and the law of the post -p process is that

of a diffusion in [y,B) started at y and killed at B, with generator

(21) 

Finally, if J = sup{ s ; ; Xs = b}, then the process { Xt+c ; ; 0  t  ~ - Q }

has the same distribution as a diffusion in [b,B) with generator

(22) [s-s(b)] 

started at b and killed at B.

Let us apply this result to the case of interest where A = B = 0,

b = -a  0, and the diffusion X is Brownian motion started at b and killed

on reaching 0. The scale function of X is the identity map, and the

generator is 1 2 d 2 on We can now read off the decomposition at
dx 

the minimum of X from (19), (20), and (21);

(23) P(inf Xt  -x) = a/x;

(24) {Xt ; 0 _ t  p } has so {-Xt ; 0 ~ t ~ 03C1}

is a BESa(3) process, stopped on reaching -y;
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(25) {Xt+ ; ; 0 ~ t  03B6 - 03C1} has generator 1 2 d2 2 + xl d dx, so the process
t+p dx 

{Xt+p - y ; ; 0 _ t  ~-p } is a BESo (3) , stopped on reaching -y.

Finally, we can read off from (22) what the law of

{Xt+a’ ~ ~t  ~-Q}

will be; the same argument proves that

(26) {a + ~ 0 _ t  ~ - o }

is a BESo(3) process, stopped on first reaching a.

Now we can use these path decompositions and Proposition 3.3 to

finish off the proof of Theorem 3.1. From Proposition 3.3, the piece

of the path of Z up to the first hit on a is just a Brownian motion

from its last hit on zero before its first hit on a, and this, by (26),

is a BES°(3) run until it first hits a. The path of Z from its first

hit on a now splits, by (23), (24) and (25), into 
’

(27) a BESa(3) run until it first hits y;

(28) a BESo(3) run down from y until it hits zero,

independently of the path of Z up to the first hit on a. The law of y

is given by (23). The path of Z is now in three pieces; the last piece,

(28), is what we said it would be, and the first two pieces, the path up to

the first hit on a, together with (27), can now be assembled to make a

BESo(3) run until it hits y, since the two pieces are independent. This
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completes the proof of Theorem 3.1.

Notice that Williams deduced Theorem 3.4 from his path decomposition of

BESb(3) process by change of scale and speed, which transforms the diffusion

to the most general possible regular diffusion. We have taken this general

result and applied it to the particular example, though it is equally possible

to calculate the changes of scale and speed which transform BES (3) into

BM a. The result is the same; the diagram commutes!

As stated earlier, we return to the question of finding an inverse to the

mapping ~. The natural thing to do is to define for v e ~, t >_ 0,

(29) at v(ds,df) C(f),

and

(30) Lt 5 inf{u ; a > t},

and then define the function Y(v) : R + R by

Y’(v) (t) = 0 if o(Lt) = 

(31) - f(t - -)) if a(Lt) > -) ~

where = 1.

The problem is that the function ’Y(v) thus defined may not be continuous;

the solution is to restrict the set on which Y is defined, but we must be

sure to choose the restricted domain big enough to catch all (or almost all)

the ~(~).

Define for k E fV

Uk E ff E U ; ( .

~k - with ~.

By Theorem 3.1, we know the characteristic measure n of ~(R), and it is

clear from this description of n, and the Laplace transform of the BESo(3)

first passage times that for 6 > 0, x + 0,

(32) n(e-~e 2 ~(f ) )m(f) = x) = (8x cosech 9 x)2,
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where this equation is to be understood in the sense of regular conditional

distributions. Takinc 6 = x 1 E, trivial estimation yields for each E > 0

I 
2 2E 

 1 I Im(f) I = x) _ e~ 
Now consider what happens to the process ; since n(V ) = 1 for all k,

P( 3 (s, f) E C0, t] x Y k with  I m(f) I2+2e)  1- exp(-t cosech k£)2)
5 2t cosech k£) 2

for k large enough.

By Borel-Cantelli, we deduce that, for each P-almost surely there

exists a constant K(t) such that

~(x)({(s~f) ~ ; ~(f) K(t)  ~®(f) ~ 2+2E }) = 0.
So we define Mo to be the set of v E M for which the following two conditions

hold:

(i) t ~ at is finite and strictly increasing (at defined at (29));

(ii) for each t >0, 3 K(t) E (0,~) with

v({ (s, f) ; 0 _ s _ t, K(t)  Im(f) I 2+2e }) = 0, each E > 0.

With v restricted to lie in , definition (31) makes sense ; the function

is continuous. (Indeed, continuity in the open intervals where L is

constant is immediate, and, at the end points, the fact that Im(f)12+2~ . is

dominated by a multiple of t(f) for all f implies continuity). An argument

similar to that used in Proposition 3.2 proves that ’1’: M o -~ i~o is measurable;

the details are left to the reader. The final observation is that for

00 E ~, ~(c~) _ ~, since, by the construction of ~, the function a defined

at (29) is the right continuous inverse to Brownian local time. We conclude

that any Poisson process with characteristic measure n maps under V to

Brownian motion, which is the converse to Theorem 3.1.
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4. Functionals of the Brownian path ,

Recall the notation of the Introduction; a,b,c : : R2 -~ R+ and

h,k : : R+ ~ E are fixed measurable functions, and for each

t ~ 0, Gt = Xs = 0} . Define the optional time

(33) T = inf {t; + k(L t )X- t = 1} , ,

the random variables

T
Y1 = exp {- 

(34) Y2 ~ exp {- GT0 b(Xs,Ls)ds} ,

and consider the expected value of

Y ~ Y1Y2 .
We impose the condition

t
(35) lim {h(x) + k(x) }dx = co , ,

whose interpretation will become obvious shortly.

Let BES°(3) process with first hitting times {r (R); x>0} , ,

and define the measurable functions j3,y : : by

~(x,Q) - E exp [- if x ? 0

(36) 

= E exp [- b(-R ,R,)dsJ if x  0 , ,

with 03B3 defined similarly, replacing b with c. .

In this section, we shall incline to the point function description of

Poisson random measures (equivalently, Poisson point processes), since this

accords more directly with intuition, though, as remarked before, the two are

equivalent.

Now let N = {N(F); U)} be the Poisson process of excursions

of X. . For C U) we write:

{N(F); F~C} . .
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For each x > 0 define the Borel subsets of R xu: :

A = {(t,f); -k(t)-1  m(f)  h(t)-1},

Ax = (CO,xJ X U) B Ax , ,

with A = u A , , A 5 UA. . Now look at Fig.2 and think in terms of
x>O x x>O x

excursions. If we map N to a Poisson process m ° N on R x R by

sending (t,f) to (t,m(f)) , , then the excursions lying in A go to the (open)

unshaded region of Fig.2, and the others go to the (closed) shaded region. It

is clear from the Poisson process description of N that

(i) NIA and NIA are independent;

(ii) LT 
= inf {x; N(Ax) > 0} ; ; in particular, LT is independent of ;

(iii) XT > 0)/dl = 12h(l) exp [-1 2 0 {h(x) +k(x) }dxJ , ,
~ 

E XT  0)/dQ = ~k(~,) exp + k(x) }dxJ ; ;

(iv) XT = h(LT) if XT > 0 , ’

- -k(LT) 1 if X~.  0 . .

Let us now note some consequences of properties (37). From (iii) we see that

Q) = exp [-1 2l0 {h(x) + k(x) }dxJ , ,
explaining condition (35) - it is to ensure that T a.s.. The random

variable Y1 is measurable on the a-field generated by NIA so, conditional

on LT and the sign of XT, Y1 and Y2 are independent, since Y2 is

measurable on the a-field generated by .

From the characterisation (Theorem 3.1) of the Brownian excursion law,

we have that, conditional on LT, , and XT > 0,

{X ; s is distributed as ~ ~ ~ ~ h(L~)’~ .,}, ’
°

where R is a BES (3) process. Thus

(38) 1 XT > 0) = -1 LT) -1 a.s.,
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with a corresponding expression for X-0). .

Turning to 3L. > 0) , , we have to think of the process in another

way. If the function b was equal everywhere to ~ > 0 , we could take a

Poisson process in R of rate ~ independent of the process X and

superimpose it on X to give a Brownian motion marked at the points of an

independent Poisson process, and then

(39) Y2 = P(no mark in a. s..

The case of general b is only a little more complicated; the rate of the

Poisson process of marks is no longer constant, but is equal to b(xt,Lt) . . Y2
still has the interpretation (39). We now think of building up the marked

*
Brownian motion from marked excursions. Informally, the Poisson process N

of marked excursions is obtained from the Poisson process N of unmarked

excursions by taking each unmarked excursion and independently inserting marks

at rate b(X.,L.). . In more detail, if, in the unmarked excursion process,

an excursion f E U appears at local time l, then the number of marks which

go into it is a Poisson random variable with mean

03B6(f) b(Xa, l)ds

independently of all the other excursions.

In particular, the probability that the excursion receives no mark is

exp [- 03B6(f) b(Xs,l)ds],

and so, by the characterisation of the Brownian excursion law (Theorem 3.1),

the probability that the excursion receives no mark conditional on m f) , its

extreme value, is

B(m(f) ,I.) 2 .

If we now project the marked excursion process NJ into the marked Poisson

process m ~ on It+ x R as before (by identifying excursions with the
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same extreme value), we observe a Poisson process with measure dt x 4x* 2dx , ,
whose points (t,x) are independently marked with probability 1 - a(x,t)2 , ,
and unmarked with probability S(x,t)2 . . Thus the number of marked excursions

before time j!, is a Poisson random variable with mean

(40) 03B8 (l) ~ 
 dt h(t)-1-k(t)0-1 dx 2x2 

[1- 03B2(x,t)2 ].

Thus

Y2 = P(no mark in 0 _ s) = e ~(LT) ,

and finally we can, by the independence of Y1 and Y2 conditional on LT
and , and the explicit expression (37)(iii) for the density of LT
put everything together and get

(41) 
EY = 

-1(41) 0 

. 
+ e 

- a(-k(Q) 1~Q) } , ,
where

03C1(l) ~ l0 (h(x) + k(x) } dx .
This is really the whole story, though the functions y and 6 which

appear in (41) are as yet in no very explicit form. Jeulin and Yor give a

characterisation of y and 6 through solutions of certain differential

equations. Our approach also leads naturally to a differential equations

characterisation of $ and y ; ; indeed, referring back to the definition (36)

of a, , we see that for each l ~ 0, , S(.,2) is the reciprocal of the solution to

1 2d2y dx2 + 1 x dy dx - b(x,l)y = 0 (x > 0)

(42)

y(0) = 1 , , y increasing, ,

with the analogous differential equation in (- ~,0) . . It can be shown that

the differential equations obtained by Jeulin and Yor are equivalent to (42);

as in their work, we understand (42) in the distributional sense if b(.,~) is

not continuous. The easy way to see that (42) is true, at least in the case
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where b(.,i) is continuous, is to note from (36) that for each i

(43) 03B2(Rt,l)-1exp [-t0b(Rs,l)ds] is a local martingale.

Itô’s formula now gives (42) as a necessary and sufficient condition for (43).

Let us now apply this to the final assertion of the statement of Skorokhod’s

embedding result, as promised. In fact, we shall do more; we shall obtain the

Laplace transform of (M ,T) , , as do Azema and Yor.

Let us fix ~, n > 0 and take the measurable functions a, b, and c of

(34) to be defined by

b(x,A) = c(x, Q) _ ~ ~2 , , .

The measurable functions h and k of (33) are defined by

h(i) = k(Q) _ ~(Q) 1 (Q ~ 0) ,

where ~(Q) _ A - ~(Q) . . It is possible that () may vanish; in this case,

we replace {) e , , solve, and let E ~ 0 . . Plainly, the optional times

T£ defined by (33) with h and k replaced by k A e 1 will converge

almost surely to T, , so we lose no generality by assuming that ) is bounded

away from zero.

These definitions of a, b, c, h and k cast the problem of this Section

into the problem of Section 2; all that remains is a few trivial calculationso

From (36) or (42), we obtain

S(x,Q) _ ~r(x,Q) _ ~x cosech ~x

so that, from (40),

8(Q) ~(t) -1 } , ,

and from (41) 

03C1(l) = l0 dt 03C6(t)-1.
Putting this all into (41) gives

(44) E T) - ~ 
f~ 

dx cosech ~~(x) exp (- x (~ coth ~~(t) + n)dt) ,
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which agrees with the result of Azéaa and Yor in the case where p(x) > 0 for

all x ; ; the remaining case is handled by the approximation argument outlined

above.

If we are interested in the expected value of T , we can differentiate

(44) with respect to ~, , divide by -~ and let ~ and n drop to zero, giving

(45) BT = 1 3 ~0 dx [03C6(x) + 03C6(x)-1x0 203C6(t)dt] exp (-x0 03C6(t)-1 dt) .

If we now suppose that Y is continuous and strictly increasing, we can

change variables in (45) and we obtain after a few calculations that

(46) ET = ~-~ (dt)(03A8(t) - t)2.
By Schwarz’ inequality, and the assumption that p has a second moment,

(47) (t) 03A8(t)2 ~ 

~t 

x2 (dx) ~ 0 as t ~ ~,

so we can integrate by parts to give for each N E . that

(48) N-N (dt)03A8(t)2 = (-N)03A8(-N)2 - (N)03A8(N)2 + N-N 203A8(t)(03A8(t) - t) (dt) ,

using (11). Rearranging (48) gives

(49) 2 

N-N 
(dt) t03A8(t) = 

N-N 

(dt)03A8(t)2 
+ ° (1) ;

applying Schwarz’ inequality to the left-hand side of (49), we see from the

fact that p has a second moment that the right-hand side of (49) remains

bounded as N ~ ~, and, taking the limit, we deduce from (46) and (49) that

ET = ~-~ (dt) t2,

as required. The case where ’Y is not continuous and strictly increasing can

be handled directly, or by appeal to the results of Pierre C6~ , , as in

Section 2.

Using the results of this Section, we can provide alternative proofs of the

results of Knight [4] ; ; these are concerned with the case where
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h(A)=k(&#x26;) = 0 (0~a)

= +co (aA) , ,

and

= .(x.~) = ~o,~(~)’~’’i[~a),g~))’~~[g~).~~ ’~.~o)

where g~, g~ are given measurable functions, and X, p, v are positive.
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