@article{SPS_1981__15__206_0, author = {Mc Gill, P.}, title = {A direct proof of the {Ray-Knight} theorem}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {206--209}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {15}, year = {1981}, zbl = {0458.60071}, mrnumber = {622564}, language = {en}, url = {http://www.numdam.org/item/SPS_1981__15__206_0/} }
TY - JOUR AU - Mc Gill, P. TI - A direct proof of the Ray-Knight theorem JO - Séminaire de probabilités de Strasbourg PY - 1981 DA - 1981/// SP - 206 EP - 209 VL - 15 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_1981__15__206_0/ UR - https://zbmath.org/?q=an%3A0458.60071 UR - https://www.ams.org/mathscinet-getitem?mr=622564 LA - en ID - SPS_1981__15__206_0 ER -
Mc Gill, P. A direct proof of the Ray-Knight theorem. Séminaire de probabilités de Strasbourg, Volume 15 (1981), pp. 206-209. http://www.numdam.org/item/SPS_1981__15__206_0/
[1] En guise d'introduction". Soc. Math. France Astérisque 52-53, 3-16, (1978). | MR
and : "[2] Une solution simple au problème de Skorokhod". Sem. Probab. XIII, Lecture Notes in Mathematics 721, 90-115, Springer (1979). | Numdam | MR | Zbl
and : "[3] Diffusion Processes and their Sample Paths". Springer (1965). | Zbl
and : "[4] Autour d'un théorème de Ray". Soc. Math. France Astérisque 52-53, 145-158, (1978).
and : "[5] Random Walks and a sojourn density of Brownian motion". TAMS 109, 56-86, (1963). | MR | Zbl
: "[6] Special functions and their applications". Prentice Hall (1965). | MR | Zbl
: "[7] Sojourn times of diffusion processes". Ill. Journ. Math. 7, 615-630, (1963). | MR | Zbl
: "[8] On the uniqueness of solutions of stochastic differential equations". J. Math. Kyoto Univ. 11, 155-167, (1971). | MR | Zbl
and : "[9] Bessel diffusions as a one-parameter family of diffusion processes". Z. für Wahr., 27, 37-46, (1973). | MR | Zbl
and : "