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REGENERATIVE SETS ON REAL LINE

M. I. Taksar
Cornell University

A number of papers are devoted to studying regenerative sets on a positive

half-line, i.e. random sets M which form a replica of themselves after each stop-

ping time T E M. Our objective is to construct translation invariant sets of this

type on the entire real line. Besides we start from a weaker definition of regen-

erativity, involving only special times T-infima of intersections M with half

lines 

~ 

1. INTRODUCTION

Let be a probability space and let T be the real line 

A subset M of T x 0 is called a random set if M is B x F-measurable and

M(w) is nonempty for a.e. c~, where B is the Borel a-field of T and M(w) is

the w-section of M.

We say that M is a closed (discrete, perfect, etc.) random set if M(o)

is closed (discrete, perfect, etc.) for almost all w. We consider only closed

random sets, so we shall not mention this explicitly each time. The complement of

is a countable union of disjoint open intervals ]y,S[. Let I(t) stand

for the interval ]y,S[ which covers t and z-, z stand for the ends of I(t).

(We put zi = zt = t if t E M.) We associate with M a (T)2-valued stochastic

process zt 
= (zt, zt), t E T. The a-algebra in 0 generated by this process is

denoted by a(M) and independence (or conditional independence) of random sets

means independence (or conditional independence) of corresponding associated

processes.

We denote by MI the intersection of M with an interval I and by

a(MI) the corresponding a-algebra in n. We write M t and Mt for intersections

of M with I = and [t,+~[.
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A random set M is called Markov if .

1. . A. For each t

a) Mt and Mt are conditionally independent, given zt.
b) Mt and Mt are conditionally independent, given zt. .

A random set M is called right regenerative (r.r.) if

I. B. For any t, M z+t 
and Mt = Mz+t - z+t are independent.

A random set is called left regenerative (l.r.) if

z

1. B’. For any t, M 
t 

and Mt = M - are independent.
zt 

t

The set satisfying both 1.B and 1.B’ is called double regenerative (d.r.).

It is obvious that 1.B implies l.A.a and 1.B’ implies l.A.b and thus any d.r. set

is Markov.

A random set is called translation invarian t (t.i.) if

1. C. The distribution of M + t does not depend on t.

This is equivalent to an assumption that (zt - t,.P) is a stationary process,

where zt - t = (z-t - t, z+t - t).

Processes with independent increments can be used for constructing r.r.

random sets. The following facts on these processes can be found, for example,

in [1 ] .

Let a be a nonnegative constant and lI be a measure on such that

~ x 1 II (dx)  ~ (1.1)
o 

, 

’

Then there exists a right-continuous increasing process yt with independent incre-

ments, t E T+ _ [0,~[, with transition probabilities PQ and the set of discon-

tinuities J such that

1. D. For any function f on T

Pl 
f(yt - 

yt-) = (d - c) ~D f(x) II(dx) *)

*
We denote by one letter a measure and the integral with respect to this measure.
Thus for a random variable 03BE P03BE means its mathematical expectation with respect
to P.
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1. E. yd - yc = 03B1(d - c) +  (yt - yt-).

We call yt an (a,n)-process. The constant a is called translation constant

and TI is called the Levy measure of the process. An is uniquely

determined by its initial distribution at time 0. Put

e(II) =  xII(dx) = ~ II(]x,~[)dx
0 0

The condition

e (1I) (1.2)

is necessary and sufficient for y )  ~ for all ~, sand t.

It follows from the results of Section 6 that the range of yt (i.e. the

closure of the set of values of yt) is r.r. and Markov.

A set M is called (a,n)-generated if for every s > -oo there exist an

(a,n)-process whose range restricted to has the same distribution as MS.

Our main result is the following.

THEOREM 1. Each right regenerative translation invariant closed random

set M is left regenerative. There exists a ~ 0 and TI subject to (1.2) such

that M is (a,n)-generated. The vector (a,ll) is unique up to proportionality

and satisfies the following relations:

P{ t E M} = a/ (a + e(lI) ) ; ; (1. 3)

for any function f on T x T

P{03A3 f(03B3,03B4)} = c j {J f{s, s + y) 03A0(dy)}ds {1.4)
y -oo 0

where

’ 

c = (a + (1.5)

Let a ~ 0 and TI satisfy (1.2) and a + e(II) > 0. Then it is possible

to construct one and only one double regenerative translation invariant closed set

M which is (03B1,03A0)-generated.
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A random set M is called thin if for any t .

THEOREM 2. Each thin t.i set M subject to l.A.a is d.r. and thus is

(0,n)-generated for some n sub ject to (1.2).

Discrete t.i.r.r. sets can be considered in the domain of Renewal Theory.

To each set M of such type there corresponds a random flow whose times of arrivals

coincide with the points of M. In this case the property 1.C is equivalent to

the stationarity of the flow, that is the distribution of the number of arrivals

which occur in the intervals I1, I2, ... , , Ik is the same as that of I1 + t,

12 + t, ... , , Ik + t (see [2], p. 339). The property 1.B is equivalent to the

independence of the lengths of the intervals between successive arrivals (waiting

times). By virtue of Fubini’s theorem any discrete M is thin, consequently it

is (O,n)-generated. The range of a (0,n)-process is discrete iff n is a finite

measure (see [3], Ch. XI, TXI.l). Hence Theorem 1 implies the following known

result.

THEOREM 3. All the stationary flows on the real line with independent

waiting times between successive arrivals are in one-to-one correspondence with

probability measures n on ]0,oo[, subject to (1.2). The measure n is the dis-

tribution of the waiting time between successive arrivals.

In the theory of regenerative se ts on T+ (see, for instance, [3], where

further references may be found) it is supposed that M contains 0 and that Mt
is adapted to an increasing family of a-fields A in S~. The definition of

(right) regenerativity in the case of unbounded sets M is equivalent to the

following:

1. F. For every stopping time T with respect to At such that T E M

a) MT - T and MT are independent

b) the distribution of MT - T does not depend on T.

In our case 1.F holds for T = zt: the relation l.F.a is just the same as I.B;

and l.F.b follows from translation invariance. Since we use only a very limited
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initial class of random times T, our construction of the (a,n)-process starting

from a r.r. set is much more complicated than the analogous one in [3].

In Section 2 we prove some properties of the (03B1,03A0)-processes. In the

next section we introduce the families of the a-fields generated by a random set

M and prove that every t.i.r.r. set is either perfect or discrete. Then we con-

struct, for each t, an (a,H)-process y whose range coincides with Mt a.s. In

the next two sections we prove that there exists no more than one t.i. (a,ll)-gen-

erated set and we construct such a set, given a and II.

The main idea of the construction is rather simple. We take a sequence

of (03B1,03A0)-processes whose initial distributions are uniform on ] and take

the weak limit of their ranges, when n -~ oo. This simple idea however, causes a

lot of technical problems; the most difficult is to show that all the properties

of (03B1,03A0)-generated sets are stable under a weak limit.

Section 7 is devoted to the proof of Theorem 2. We give an example of a

t.i. Markov set which is not r.r. 

The word "function" will always stand for a nonne gative bounded measurable

function. All subsets r, A of T and (T)n are supposed to be Borel. We

denote and ]-~,t] by Tt and Tt respectively. If r is a subset of

T then the writing r > t (or r _ t) means that r C Tt (or r C T t ).
If 03BE is a random variable, then writing 03BE ~ M means that M(w)

for a.e. w.

If we have a Euclidean space E and we define a measure v only on the

subset A of the space E then it is always assumed that = 0.
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2. PROPERTIES OF (a,n)-PROCESSES

Fix a and n subject to (1.1) and consider an (a,n)-process y . . Put

6Q = ~,} = Q} ; (2.1)

UQ = UQ = Ya Q, ~ Yi = .

We call YQ = the jump over Q. °

Denote

II(s;r) = n(r-s) , , r,c T

= n(s;r) , , r, A c T

For f being a function on (T)2 set

Af(s,u) = 

f(yt-,yt) 

(2.2)

If A c T x T we write A0394(s,u) instead of A10394 (s,u). . Writing Af without any

arguments stands for .

LEMMA 2.1. . For any function f on T x T,

P b { A f} = J 
where

03BBb(0393 ) = Pb ~0 10393(yt)dt , 0393 ~ T ( 2. 3)

The proof of this Lemma is well-known.

LEMMA 2.2. For any r c Tl

E on the set {Ui  R,} (2.4)
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Proof . ° Let ri, r2 ~ T, rl  Q  r 2. 
= r 

1 
X r2 ~ T x T. By

virtue of Lemma 2.1

r1’ VQ E r2} = = J 

= J Àb(dx) TI(x;r2) (2.5)

r1
Similarly

r ~ = ; ~1 Àb(dx) (2.6)

Comparing (2.5) and (2.6) we obtain (2.4). .

LEMMA 2.3. Let (yt,P) be an . If e(n) = oo, then for each

a > 0

 N+a) ~ 0 as N -~ oo . °

Proof. . Suppose P = P~. . Put r1(N) = inf{k: k-integer, N}. . The con-

ditions of the Lemma imply that °°’ It is known (see [4], , for example)

that for each a > 0

(N) 
 N+a} + 0 as N -~ °

Choose m such that m}  e * Let N be such that for any L ) N,

 L +m+ a}  e . . Since r1 (L)  6L +1, we have ya L +1’ 
. Therefore,

for any L ) N,

 L+m+a , yn (L) - ~ ~’~~

 e + 2e .

The passage from P~ to an arbitrary P is trivial. .

LEMMA 2.4. Let (yt,Pb) be an (a,H)-process and aN defined by (2.1). .

Then

lim = (a + e(II) ) 
1 

(2.7)
N

Moreover, the convergence is uniform for all b E [c,a], , c  a.
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Proof. The fundamental theorem of Renewal Theory implies that

lim = (a + e(n))-1
" " ~ ~

where 03C6N = sup{k:k-integer, Yk  N}. (See [5], Ch. 9.)

Since ~  a _ ~ +1, we have (2.7) ’

Inasmuch as for any ~ > 0

(N+ ~,) 
1 

/N

the convergence in the left side of (2.7) for any fixed a implies the uniform

convergence of (2.7) for all b E [c,a].

LEMMA 2.5. Let f(x) be a bounded function on Tt. Suppose f has at

most a countable number of discontinuities. Then so do the functions

f(x) = II(x;f) , ,

f (x) = x E 
.

Proof. Let A be the set of discontinuities f and A2 be the count-

able set of atoms of II. Put

A = {y:y = xl - x2, xi E Ai)

The family of measures II(x;-), x E Tt - £ is uniformly bounded by 

and is weakly continuous with respect to x (being the shift on x of a single

measure II). Therefore (see [6], Th. 5.1) f(x) is continuous for all x such

that II(x;-) does not charge A1, that is for all x E A.

LEMMA 2.6. Let f be a continuous function on (T x T) k and let

tl  t2  ~~~  tk. Then

Pb{f(Yt1,Yt2, ... ,Ytk)}
is a left-continuous function of b on the set {b  tl}. .
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proof. Consider k = 1. (The case k > 1 is similar.) Let t > a, and

bn ~ a. Put tn 
= t - bn. Since Qt 

n 

= 

6t on the set {Vt > we have

n n {f(Yt)} 
= ) } ° n n);Vt > tn} + n n );Vt ~ tn} (2.8)

Since t, then

03C3t ~ 03C3t; {Vt > tn} ~ {Vt > t}; {Vt ~ tn} ~ {Vt = t} .

n

Using the bounded convergence theorem we get that the limit of (2.8) is equal to

t) + = t} = Pa~ f (Yt) } . °

3. . THE STRUCTURE OF A T.I.R.R. . SET .

In this section we prove that each t.I,r ,r , set M is either discrete or

perfect.

We put for convenience ut = zt, vt = zt. Set

D~t = {vt ~ M, ]vt, vt + ~[ ~ M = }, D0t = D~t

Ct = M and for each E > 0 ]vt, vt + e [ fl M ~ }

LEMMA 3.1. . Either

= 1 f or all t ( 3 .1 )

or

= 1 for all t. (3.2)

Proof. , 10. We have P~M ~ ~} = 1, therefore

lim ~} == 1
f~- -~

Since M is t.i. , then ~} does not depend on t and therefore is equal

to 1. . This implies vt a.s., , so

vt E M a.s. . (3.3)
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20. Denote = P{C }. Relation (3.3) implies

03B10 + 03B2 = P{v
t 

E M} = 1 (3.4)

Put

t (k, n) = k2 - n (3.5)

L(k,n) = [t(k-1, n), t(k,n)[ (3.6)

= t(k,n) if s E L(k,n) (3.7)

Calculate

D~} _ ~ k = t(k,n), (3.8)

Since {C ,~ = t(k,n)} is and is 

we may apply 1.B to (3.8) and obtain

P{CtD~03C6}= P{D~t} P{ (C = = 03B1~03B2 (3.9)

Now let n + oo. On the set vt and 1 
E 

~ 0. Therefore the left side of

(3.9) tends to 0 when n + oo. We get = 0 for each e > 0. Since a0 - sup aE
then a0s = 0; Comparing the last equality with (3.4) we get the statement of

the lemma.

LEMMA 3.2. If M satisfies (3.1) then M is discrete, if M satisfies

(3.2) then M is perfect.

Proof. 10. . Put

T(O,t) = Tt = vt+ 
= inf{s > t, s E M} (3.10)

T(k,t) = T(0,T(k-l,t))

If (3.1) holds then expressions similar to those of (3.8) and (3.9) show that for

each k

P{ JT (k, t), T(k,t) + e[ [ fl M = ~ for some e > 0} = 1

and all nk 
= T(k,t) - T(k-l,t) are independent and identically distributed. Con-

sequently as k -)- °o; M is equal to the union of the graphs of T(k;t);

as a result, M is discrete.
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20. Suppose (3.2) holds and {) is an isolated point of M{ca). Then there

exists e > 0 such that I = ]03C6-~, 03C6 [f1M(w) _ . Hence 03C9 E D0t for all t E I.

Applying the Fubini theorem, we see that this can happen only for ~r with P-measure

zero.

4. CONSTRUCTION OF THE GENERATING (03B1,03A0)-PROCESS

In this section we construct an (a,n)-process whose range is indistinguish-

able from Mt.

The case in which M is discrete has been already treated. In Section 10

of Lemma 3.2 we showed that for each t Mt is indistinguishable from the union of

the graphs of the sums of i.i.d. positive random variables Thus M is {O,II)-

generated for II (T) = P{~1 ~ r}

In the case when M is perfect the natural candidate for a generating pro-

cess is the inverse of the local time of M. Since we can use regenerativity of M

only for a very restricted class of stopping times we must construct a local time

ut in such a way that ut has no discontinuity when t is the left endpoint of

an interval contiguous to M. For this purpose we introduce the notion of regular

and irregular points of a set and prove that the structure of the set of regular

points on the interval depends only on the structure of the original set

on the same interval (Lemma 4.1).

Put N = 0 Denote

Ft = 03C3(N[0,t]), As = Fs+ = Ft ,

a(M) being the minimal o-field generated by N and all sets of P-measure 0. Let

Ts be defined by (3.10) and 03BEt = exp(t - Tt) . Let 03BEt stand for the well-measur-

able projection with respect to At. Denote by N the set of left end-

points of the intervals contiguous to N and put

Nreg = ~t:~t  1} fl N~ = {t > O:t = Y, ~t  1}

N~ir = N ,Nreg = { t > 0 : t = Y , 03BEt ~ 1}
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The definition of L~reg and L, ir for an arbitrary set L is similar to

the one given above. First we consider 03C3-fields $t generated by the set L.

Then we consider the family of stopping times (with respect to $t) Tt which

are the first hitting times of L after t. We consider the well-measurable pro-

jection 03BEt of exp(t - Tt), with respect to the filtration $t. The set of the

left endpoints s of intervals contiguous to L such that ~S  1 (such that

03BEs = 1) is denoted Lre g (is denoted 

LEMMA 4.1. For any u > 0

(Mu)~reg = {N~reg - vu} ~ [0,~[ (4.1)

Proof. Denote $s = ~ o(M [O,t]), 03C4t = inf[s > t:s EM} = Tv +t t’- 

s 
t>s 

t u

rit = exp{t - Tt). Let nt stand for the well-measurable projections of rtt
with respect to $t. (See [7], Ch. V for the definition and details.) The state-

ment of the Lemma follows from the following equality

~ t 
= for all t a.s., (4.2)

u

which we are going to prove. By [1], Ch. IV, T28 03BEt and rtt are a.s. right-

continuous, hence it is enough to prove (4.2) for any fixed t. Put a = t * v .
Since 6 is a stopping time with respect to At’ then $t c A03C3 . For any A E $t

= = = P{1A~t} = P{lArlt}
u

Therefore

P~~Q/$t) = P{nt/$t} = nt a . s . (4.3)

Prove that 03BE03C3 is 03B2t-measurable. Define L(k,n) by (3.6) and put A(k,n) _

{v u E L(k,n)}. Put e = 2 n and a = vu + e. We have 03BE03C3 = k G lA(k is

03C3(Na+t)-measurable. Since nt is o(M )-measurable and

o(Na+t) o(Nv )v03C3{Mu[0, t+e]} (4.4)
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we obtain 
’

} = } = |Nv } = P{~t IN v } = pint}
u u u u

= = (4.5)

The expression (4.5) shows that 03BE03C3 and Nv are independent. Comparing this
u

with (4.4) and l.B we see that 03BE03C3 is o(Mu[O,t+s])-measurable. . In view of arbi-

trariness of e we get that 03BE03C3 is B -measurable.
For a random set M and real numbers a and b put

~(M,a,b) = m(M]a,b]) + I 1 - ,

where the sum is taken over all (Y,a) such that a  y  b; y E Mir; ; and m is

the Lebesgue measure. The functional 03B6 is used for the construction of a local

time . We want ut to be "homogeneous," that to depend only on

the "shape" of N[s,s+b] but not on s. For this reason we need the following

LEMMA 4.2. For any s, , b > 0

1(N,v ,v +b) = 03B6(Ms,0,b) .

This follows immediately from Lemma 4.1. 

LEMMA 4.3. If T is a stopping time with respect to At then

Pf T E = 0

Proof. Put A = E Let = if 00 E A and

o((d) = ~, if w t A. Since o is a stopping time and A E A03C3 we have (see [7],

Ch. V, T37)

P~ (~Q - = 0 (4.6)

But 03BE03C3 = 03BE03C4 ~ 1 on A and 03BE03C3 =  1. . Therefore (4.6) implies P{A} = 0.

Put t = 03B6(N,0,t) and let ut stand for the dual well-measurable projec-

tion of ut with respect to At. (See [7], , Ch. V for the definition and details.)

Put ’

> s} (4.7)
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We prove that ys generates N (Lemma 4.5). This proof uses a common technique

of the general theory of processes (see j7], Ch. IV, V). Lemma 4.6 proves that y 
s

is a homogeneous process with independent increments. In order to apply 1.B we

have to approximate the stopping time y 
s 

by the stopping times r1n such that

~tn ~ ys and r1n belongs to the set of the right endpoints of the intervals con-

tiguous to M. Such an approximation is possible if ys differs from all left

endpoints of this type intervals. This fact follows from Lemma 4.4.

LEMMA 4.4. For any s

N } = 0 . (4.8)

Proof. 10. Since u has discontinuities only when t E M, , then by

Lemma 4.3 for any stopping time 6, uQ 
= 

uo- a.s. By [7], Ch. V, T30 for any

well-measurable with respect to ~t process

P{~0 03C6t d t} = P{ j 0 (4.9)

Taking 03C6t = we find out that uo 
= 

ua- a.s. for any stopping time o. By

[7], Ch. IV, T30 ut is a continuous process.

20. Fix s and put y - z. Since ~. is continuous, u - s; and for

any E > 0, ~z~ > s. Put A = {z E N }, I = [z,TZ[, Tt being defined by (3.10)

and set ~t = lAll(t). Applying (4.9) to ~t, , we get

= + (z) (1 - exp(z-TZ)} (4.10)
z ~ir

The first summand in the right side of (4.10) vanishes, because m(M[z,TZ[) = 0

for any z. The second summand is also equal to zero, because z is a stopping

time and by Lemma 4. 3 . Since uT > u 
z 

a.s. on A, we ge t
z

P{A} = 0.

LEMMA 4.5. The range N of the process ys is indistinguishable from N.
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proof. 1~. Since ys is an increasing right continuous process, then N

is a closure of the set {t:t = yr, r-rational}. By [7], Ch. VI, T4, N is a well-

measurable set. The set N is also well-measurable, because N is closed and

N is adapted to A . Put A - N"’ fl {t:03BEt  1 - k 1}. By [7], Ch. VI, T2, A,k
is progressive measurable. Usual arguments show that Ak is discrete. By [7],

Ch. VI, T4 it is well-measurable. Inasmuch as N~reg = T, U we get that N~reg is

well-measurable the same as N B N+reg.
2~. Since N and 

g 
have the same closure it is enough to show

that

N N a.s. (4.11)

N ~ N B N~reg a.s. (4.12)

Let 03C3 be a stopping time such that u E N ‘ Nre g a.s. on {?  By Lemma

4.3 N } = 0, 0 for all e > 0. The same reasoning as

in Section 2C of Lemna 4.4 shows that 03C3+~ uo > 0 a.s. on {o  Therefore

y 
u~ 

= 6 a.s. on {6  00} and we have o E N a.s. on {a  By [7], Ch. IV,

T13, this implies (4.12).

By (4.9)

Hence ut does not increase on a.s.; and P{yrE for any r > 0} = 0.

This implies (4.11).

LEMMA 4.6. The process (yt,P) is a homogeneous process with independent

increments.

Proof. 1~. Let us show that for each r > 0

N } = 0 (4.13)

In view of 1.C the left side of (4.13) does not depend on r; therefore

N } = j e u N~}du = P{ j e-n = 0
0 0 

"

20. Let t(k,n), L (k,n) and ln be defined by formulae (3.5), (3.6) and
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(3.7) respectively. Fix 0  s  t and put z = ys; zn = TQ (y ). 
Fix a > 0.

~ 

Let n = T t (k, n) ’ put

- u n  
z+a z

In view of 1.C P~~(M ,O,c)  b} does not depend on u; we denote this number by

r(c,b) .

Let A E Ay . Consider
s

> a} =  t-s} = (4.14)

By Lemma 4.4. E M } = 0; therefore, z a.s. In view of continuity of

ut, B; hence

P(AB} = lim = lim P{  ACkB } (4.I5)
n~~ k=1 

n n

Note that Put D = ACkn, and 03C6t = 1D1~t~+a. Applying (4.9} to

03C6, we get

= = = rt+a}  t-s} (4.16)

Formula (4.13) implies a.s., hence we can replace in (4.16)

by and apply Lemma 4.2. Doing so, we get

=  t-s} (4.17}

Since D is we can apply 1.B to (4.17}

= P(D} r(a,t-s) (4,18)

Comparing (4.18), (4.15) and (4.14} we obtain

= r(a,t-s}

and that proves the lemma.
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LEMMA. 4.7. The process ys is an increasing (03B1,03A0)-process with lI subject

to (1.2).

Proof. We have already proved that ys is a homogeneous process with in-

dependent increments; that is an (a,n)-process.

Since y 
s 

generates M0, the distribution of V - t is equal to that of

T - t for each t > 0. By 1.C the distribution of does not depend on t.

Choose a such that t  a} > 0.5. Suppose lI does not satisfy (1.2). By

virtue of Lemma 2.3 P{Vt - t  a} tends to 0 when t -~ oo. Therefore, we come to

a contradiction.

LEMMA 4.8. If M is a t.i. (a,n)-generated set then the vector (a,II)

satisfies the equations (1.3) and (1.4), which determine it up to proportionality.

Proof. 10. Let t be the distribution of v and let 03BBb be defined

by (2.3). Consider

nt(r) = j 0 r c T

It is easy to see that for each a E T and 0394 ~ T, 03BBb(0394) = 03BBb+a(0394 + a). In view

of t.i. the same is true for the family of measures ut. Therefore,

+ a) (4.19)

Let 03C0 be a measure on T x T defined

’~(r) = P{ ~ lr(Y~s)} ~ r c T x T

Y

Let Af be defined by (2.2). If f(x,y) is a function on T x T such that

f(x,y) = 0 for x  t, then

00 00

’~(f) = P{ ~ f(Y~s)} _ ~ At(dx) (4.20)

Taking s  t, and applying the same computations we get

= (4.21)
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Put I = [a,b], t  a  b and put f(x,y) = (e(lI)) 11 I (x)(y-x). Applying to f

(4.20) and (4.21) we obtain

7r(f) = A~(l) == At(I) (4.22)

In view of (4.19) the relation (4.22) is equivalent to At(I) = A (I + t - s).

Therefore, A t (dx) = cm(dx) (on [t,~[). Substituting the expression for A t into

(4.20), we get (1.4) for f with support in Tt x T. Standard arguments show

that (1.4) holds for all f.

20. Let g(x,y) = y - x and it = / Since M is t.i. we have

p{u E M} = L - 1 J L M)dt = lim L- 1 

= lim L 1 y.. - A (O,aL)}

= lim lim Yo - A (O,Q )), (4.23)

where P(u) - P b + (The last equality in (4.23) is due to the

fact that P (C) I + 0 for each event C.) By virtue of 1.E the expres-

sion under is equal to aQ . Applying Lemma 2.4 we see that (4.23) is equal

to a/(a + e(II)).

3~. Formulae (1.3) and (1.4) imply

= c 1 P{ I lr(s - Y)} , r c T (4.24)

a = P( t E M) e (II) / (1 - (4.25)

The expressions (4.25) and (4.24) determine (a,n) up to a constant c.

COROLLARY. The constant c in (1.4) is given by ~(1.5) .

Proof. Since M} +  t  vt} = 1 we get

a/(a + e(n)) + c j n(x;T’) = 03B1/(03B1 + e(n)) + ce(n) = 1

and this is equivalent to (1.5).
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5. CONSTRUCTION OF A T.I. SET, GIVEN a AND II.

In this section first we prove that (zt,P) is a Markov process whose

one-dimensional distributions and transition function are uniquely determined by a

and IT. This implies the uniqueness of a t.i. (a,n)-generated set.

The main part of this section is devoted to constructing a t.i. set with

given a and n. First we consider the (a,n)-process with initial distribution

uniform on [-n,0]. Let be the corresponding jump process. We get the

process (zt,P) by passing to a weak limit as n + oo. To justify this we make

use of the following Lemma, proved in [6] (see Th.5.1).

LEMMA 5.1. If pn is a sequence of measures on a topological space X

and pn converges weakly to p then

-~ p (f)

for each f whose set of discontinuities has p-measure zero.

We apply this lemma to the case of an open half-line X, an absolutely con-

tinuous (with respect to Lebesgue’s measure m) measure p, and a function f with

at most a countable number of discontinuities. We use also the following fact, the

proof of which is trivial.

LEMMA 5.2. If pn is a sequence of measures on X and any subsequence

of pn has a sub-subsequence which converges weakly to a measure p, then pn

converges weakly to p.

The plan of the construction of (zt,P), given a and n is the following.

First we show that the sequence of distributions of Ut under Pn is tight

(Lemma 5.4). Then we show that this sequence is weakly convergent and we find

the limit measure (Lemma 5.6). After that we find the conditional distribution of

(Vt, Yt1, Yt2, ..., Yt ), t  tl  ...  t given U and show that this distri-

bution does not depend on n (Lemma 5.7). Applying Lemma 5.1 we find that the

finite dimensional distributions of Pn weakly converge to those of measure P

(Lemma 5.9).



456

Further improvement of the trajectories of (Yt,P) and the construction of

the set is done in Section 6.

LEMMA 5.3. If M is a t.i. (a,IT)-generated set then the associated process

(zt,P) is Markov with one-dimensional distributions

t

03BDt(0393) = n (r)dx) (5.1)

c given by (1.5), r C Tt x Tt, and transition function

p(s,z;t,r) _ B lr ( z) , 
E r} 

if y ~ > t 

(5.2)p(s,z;t,D = 
P 
y 
(Y 

t 
E r) 

(5.2)

Here z = (x,y) E T x T, r C Tt x Tt, P 
Y 

the transition probabilities of (a,ll)-

process, Yt = (Ut,Vt) is a jump over t, defined in Section 2.

Proof. If M is t.i. then pit = y} does not depend on t and

00 00

e s = = 0 .

Similarly P{t=6) = 0. Therefore for each t a.s. v = v , u 
= 

u . If the

range of (a,n)-process (y s ,P) coincides with then v 
t + 

= V 
t 

and ut- - Ute
The strong Markov property of yt implies that zt 

= (u.,v ) is a Markov

process with the transition function (5.2). It is obvious that the distribution

of zt is concentrated on Tt x Tt. Let r be a subset of Tt x Tt. By virtue

of Lemma 4.8 a and n satisfy (1.3) and (1.4); hence

r} = (t, t) , (t,t) E r} + t, zt E r}

- P~t E M}1(t~t)(r) + P~ ~ lY  t8 tt
= 10393(t,t)03B1c + c-~ 03C0x(0393)dx = 03BDt(0393) .

Lemma 5.3 points to a natural way of constructing a t.i. (a,n)-generated

set. First we have to construct a Markov process (zt,P) with transition function

(5.2) and one-dimensional distributions (5.1) and define M as the range of zt.
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Unfortunately, we cannot prove directly that v t is an entrance law with respect

to p; that is why we use a long and cumbersome procedure to construct (z t ,P) .

Let ab be defined by (2.3) and À stand for aU..

LEMMA 5.4. For any s > 0 and a > 0

~ [O,a] > ~ [s,s+a] . . (5.3)

There exist N > 0 and d > 0 -such that

. (5.4)

Proof. 10. Applying strong Markov property, we have

ao

[V s ,V s +a]} = À[O,a] . °
s

20. Since IT is subject to (1.2), y 
t 

has a finite mean; therefore, we

can apply to the sequence yk, k 
= 0,1,2,... , Renewal Theorem (see [5], p. 363).

By virtue of this theorem there exist N1 and N2 such that for any s > N1

PO{Yi E ] for some integer i} > 0.5 .

Therefore for any s >  N2} > 0.5. In view of right continuity of

yt’ 01 ~ ~ a.s. ° P0; therefore, dl = ~[0,1] = > 0. Take N = N1 + N2 + 1.

Let s > 0 and let u = s v Nl. We have

X[s,s+N] ~ ~[u,u~+l] ~ N 2 

> 0.5 = dl/2 . (5.5)

The inequality (5.5) implies (5.4) with d = 

COROLLARY. For any t and any e > 0 there exists m such that for

any b  t

° (5.6)
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Proof. Let t = 0. Put n = inf{i:i is integer, i > b}. For m

being negative integer, we have

P b {U 0  m} = P b {J 0 1ys  m 03A0(ys;T0)ds} = mb03BBb(dx) n(x;TO)

=  03BBb(dx) 03A0(x,T0) ~ 03BB[0,1] 03A0(k;T0)
k=n k-1 k=n

m 
0 

m+1 
0

 ~[0,1] ~ ~(k;T )  a[0,1] J (5.7)
-co

(The first inequality in (5.7) is due to Lemma 5.2.) In view of (1.2) the right

side of (5.7) tends to zero, when m -~ -oo.

Consider the sequence of measures

Pn = n _ 1 j 0 Pb db .
- n

As it was mentioned, we are interested in the limit behavior of the finite dimen-

sional distributions of the processes (Yt,Pn). We want to study separately the

singular and the regular parts (with respect to the Lebesgue measure) of the one-

dimensional distributions of the above processes. For this purpose we need the

following

LEMMA 5.5. For any t and any n > 1

. Vt > t} = = t, Ut  t} = 0 ; (5.8)

and

lim sup  U  t} = lim sup  V  t+E} = 0 . (5.9)
e-)-0 n 

t 
e-)-0 n 

t

Proof. 1~. We suppose t = 0 (the case in which t ~ 0 is similar)

V 0 > 0} = n _ 1 j -n 0 Pb{VO > 0, UO = 0}db = n-1 n0 > s, 

= n ds} = 0 . (5.10)


