SÉminaire de probabilités (Strasbourg)

Richard M. Dudley
 Sam Gutmann
 Stopping times with given laws

Séminaire de probabilités (Strasbourg), tome 11 (1977), p. 51-58
http://www.numdam.org/item?id=SPS_1977__11__51_0
© Springer-Verlag, Berlin Heidelberg New York, 1977, tous droits réservés.
L'accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

Stopping times with given laws

by R. M. Dudley ${ }^{1}$ and Sam Gutmann

Abstract. Given a stochastic process $X_{t}, t \in T \subset R$, and $s \in R$, then a) iff b): a) For every probability measure μ on]s, ∞], there is a stopping time τ for X_{t} with law $L(\tau)=\mu$; b) If A_{t} is the smallest σ-algebra for which X_{u} are measurable for all $u \leq t$, then P restricted to A_{t} is nonatomic for all $t>s$.

This note began with a question of G. Shiryaev, connected with the following example. Let W_{t} be a standard Wiener process, $t \in T=[0, \infty]$. Any exponential distribution on $] 0, \infty]$ will be shown to be the law of a stopping time. Using this, one can obtain a standard Poisson process P_{t} from W_{t} by a nonanticipating transformation, $P_{t}=g\left(\left\{X_{s}: s \leq t\right\}\right)$.

Definitions. A probability space (Ω, A, P), or A (for P), is nonatomic iff for every $A \in A$ and $0<p<P(A)$ there is a $B \subset A, B \in A$, with $P(B)=p$.

A stochastic process (here) is a map $X:(t, \omega) \longrightarrow X_{t}(\omega)$, $t \in T \subset R, \omega \in \Omega$, where (Ω, A, P) is a complete probability
space. Each X_{t} has values in some measurable space $\left(S_{t}, F_{t}\right)$ where S_{t} is a set, F_{t} is a σ-algebra of subsets of S_{t}, and x_{t} is measurable from A to F_{t}. Let A_{t} be the smallest sub- σ-algebra of A for which X_{s} is measurable for all $s \leq t$ and for which $A \in A_{t}$ whenever $A \subset B$ and $P(B)=0$. Let $N A(X):=\inf \left\{t: A_{t}\right.$ is nonatomic $\}$.

Note. X_{t} is said to be nonatomic if F_{t} is nonatomic for $P \circ X_{t}^{-1}$. Then if X_{t} (or any other A_{t}-measurable random variable) is nonatomic, A_{t} is nonatomic. After R. Dudley proved Theorem 2 below, and a weaker form of Theorem 1 considering only nonatomicity of individual X_{t}, S. Gutmann found the present Theorem 1.

A stopping time for the process X_{t} is a random variable τ on Ω with values in $]-\infty, \infty]$ such that for any $t \in T$, $\{\omega: \tau(\omega)<t\} \in A_{t}$.

Theorem 1. For any stochastic process X_{t} and $s \in R, s \geq N A(X)$ iff for every Borel probability measure (law) μ on ls, ∞, there is a stopping time τ for X_{t} with $L(\tau)=\mu$. If $s \in T$ and A_{s} is nonatomic, the same holds for any μ on $[s, \infty]$.

Proof. If A_{s} is nonatomic, and μ is any law on $[s, \infty]$, then there is an A_{s}-measurable random variable g with $L(g)=\mu$, as follows. We take a nonatomic countably generated sub-o-algebra
B of A_{s}. Then there is a measure-preserving map ϕ of (Ω, B, P) into $[0,1]$ with Lebesgue measure (Halmos, 1950, p. 173). Its range has outer measure 1. Let
$\left.\left.F_{\mu}(t):=\mu(]-\infty, t\right]\right), \quad F_{\mu}^{-1}(x):=\inf \left\{t: F_{\mu}(t) \geq x\right\}$. Then $g=F_{\mu}^{-1}$ o ϕ is as desired.

Now $\{\omega: g(\omega)<t\}$ is empty for $t \leq s$, and belongs to $A_{s} \subset A_{t}$ for $t>s$. Thus, g is a stopping time, as desired. If for all $\epsilon>0$ there is a stopping time τ with uniform distribution on ($s, s+\epsilon$ then τ is $A_{s+\epsilon}$-measurable, hence $A_{s+\epsilon}$ is nonatomic and $s \geq N A(X)$.

Now suppose A_{s} has an atom, $t(n) \downarrow s$ with $A_{t(n)}$ nonatomic, and μ is any law on $] s, \infty$]. Let $t(0)=+\infty$, $\left.P_{n}:=\mu(1 t(n), t(n-1)]\right), \quad n=1,2, \ldots$. By assumption, $\sum_{n \geq 1} p_{n}=1$. Suppose there is a stopping time ρ with $P(\mathcal{Y}=t(n))=p_{n}$ for all n, and $\{\mathcal{J}=t(n)\} \in A_{t(n)}$.

Whenever $p_{n}>0$, the conditional law of p restricted to $A_{t(n)}$, given $\mathcal{J}=t(n)$, is nonatomic. Thus for each n there is a real $A_{t(n)}$-measurable random variable g_{n} such that

$$
\left.\left.P\left(g_{n} \in A \mid J=t(n)\right)=\mu(A \cap] t(n), t(n-1)\right]\right) / p_{n}
$$

Let $\tau:=g_{n}$ iff $\mathcal{\rho}=t(n)$. Then τ is measurable and $L(\tau)=\mu . \quad$ If $t \in T$ and $t \leq s,\{\tau<t\}$ is empty. If $t>s$,

$$
\begin{aligned}
\{\tau<t\}= & \left(U_{n}\{\mathcal{P}=t(n)<t(n-1)<t\}\right) \cup\{\mathcal{P}=t(n)<t \leq t(n-1) \\
& \text { and } \left.g_{n}<t\right\} \in U_{t(n)<t^{A}}(n) \subset A_{t} .
\end{aligned}
$$

Then τ is a stopping time with law μ. The problem is now reduced to the case $T=\{t(n)\}$ or equivalently where T is the set of negative integers and all A_{t} are nonatomic. This will be treated in the following Lemma and Theorem 2.

Lemma. Given a nonatomic probability space (Ω, A, P) and events A, B, D with $A \subset B, P(B)>0$ and $P(D)>0$, there is an event $C \subset D$ such that $P(C \mid D)=P(A \mid B)$ and $P(C \Delta A) \leq 2 P(B \Delta D)$, where $C \Delta A:=(C \backslash A) U(A \backslash C)$.

Proof. Let $p:=P(D) P(A) / P(B), E:=A \cap D$. If $p \leq P(E)$, Choose $C \subset E$ with $P(C)=p$. Then $P(C \Delta A)=P(A>C)$ $=P(A)-P \leq P(B \backslash D)$ since $P(A) P(B) \leq P(A) P(D)+P(A) P(B>D)$. $\leq P(A) P(D)+P(B) P(B \backslash D)$.

If $p>P(E)$ choose C with $E \subset C \subset D$ and $P(C)=p$. Then $P(A \Delta C)=P(A \backslash D)+p-P(E)$.

We need to prove

```
P(A\D)P(B) + P(A)P(D) < P(B)P(E) + 2P(B)P(B D D . Now
P(A\D) \leq P(B\D), and P(A)P(D) \leq P(A)P(B)+P(A)P(D\B)
    \leq P(B)P(E) + P(B)P(A\D) + P(B)P(D\B)
    \leq P(B)P(E) + P(B)P(B \Delta D), as desired. In either case
C<D and P(C|D)=P(A|B), Q.E.D.
```

Note. If $B=\Omega$ and $A=B \backslash D$, then $P(C \Delta A)=P(A)+P(D) P(A)$ $=2 P(A)-P(A)^{2} \sim 2 P(B \Delta D)$ as $P(A) \longrightarrow 0$. In this case, the constant 2 is best possible.

Theorem 2. Given a probability space (Ω, A, P) and nonincreasing sub- σ-algebras $A_{n}, n=1,2, \ldots, A \supset A_{1} \supset A_{2} \supset \cdots$, such that P is nonatomic on each A_{n}, and given any $P_{n} \geq 0$ with $\Sigma_{n \geq 1} p_{n}=1$, there exist disjoint $A_{n} \in A_{n}$ with $P\left(A_{n}\right)=p_{n}$.

Proof. Let $n(0):=1$, choose $n(1)$ large enough so that $r_{1}:=\varepsilon_{j<n(1)} p_{j}>0$, and let $n(k) \uparrow+\infty$ fast enough so that $\Sigma_{n \geq n(k)} p_{n} \leq 4^{-k}$ for all $k \geq 2$. Let $r_{k}:=\Sigma_{n(k-1) \leq n<n(k)} p_{n}$. If we can find disjoint $B_{k} \in A_{n(k)}$ with $P\left(B_{k}\right)=r_{k}$ for all k, then we can choose A_{n} for $n(k-1) \leq n<n(k)$ as disjoint subsets of B_{k} with $P\left(A_{n}\right)=p_{n}, A_{n} \in A_{n(k)} \subset A_{n}$. Thus, we may assume $p_{1}>0$ and $\sum_{n \geq 1} 3^{n} p_{n}<\infty$.

$$
\text { Let } \pi_{n}:=p_{n} / \Sigma_{l \leq j \leq n} p_{j} \text {. Take } A_{n l} \in A_{n} \text { with } P\left(A_{n l}\right)=\pi_{n}
$$ for each n. Given $A_{n j}$ for all n and for $j<k$, let $B_{n l}:=\Omega$ and for $k \geq 2$ let $B_{n k}:=\Omega _{1 \leq j<k}^{\bigcup} A_{n+j, k-j}$. We choose $A_{n k}$ for each n by the Lemma so that $A_{n k} \in A_{n}, A_{n k} \subset B_{n k}$, $P\left(A_{n k} \mid B_{n k}\right)=\pi_{n} \quad$ (or if $\left.P\left(B_{n k}\right)=0, A_{n k}=\phi\right)$, and

$$
P\left(A_{n k} \Delta A_{n, k-1}\right) \leq 2 p_{n k}:=2 P\left(B_{n k} \Delta B_{n, k-1}\right) \text {. Then }
$$

(*)

$$
p_{n k} \leq \pi_{n+k-1}+\Sigma_{1 \leq j<k-1} 2 p_{n+j, k-j}
$$

Claim: $p_{n k} \leq 3^{k-2} \pi_{n+k-1}$ for all $k \geq 2$.

This will be proved by induction on k. For $k=2$; (*) gives $p_{n 2} \leq \pi_{n+1}$ as desired. For the induction step, (*) gives

$$
\begin{aligned}
p_{n, k+1} & \leq \pi_{n+k}+2 \Sigma_{1 \leq j<k} 3^{k-j-1} \pi_{n+k} \\
& =\pi_{n+k}\left[1+2\left(1+3+\cdots+3^{k-2}\right)\right] \\
& =\pi_{n+k}\left[1+2\left(3^{k-1}-1\right) /(3-1)\right]=3^{k-1} \pi_{n+k}
\end{aligned}
$$

proving the Claim.

Now $\sum 3^{n} \pi_{n} \leq \sum 3^{n} p_{n} / p_{1}<\infty$. So $A_{n k}$ converges to some event A_{n} as $k \longrightarrow \infty$, specifically

$$
\begin{aligned}
& P\left(A_{n} \Delta A_{n k}\right) \leq \Sigma_{j>k} P\left(A_{n j} \Delta A_{n, j-1}\right) \\
& \leq 2 \Sigma_{j>k} 3^{j-2} \pi_{n+j-1}=2 \Sigma_{i \geq k} 3^{i-1} \pi_{n+i}
\end{aligned}
$$

Since $A_{n k}$ is disjoint from $A_{n+j, k-j}$ for all $j<k$, we can let $k \longrightarrow \infty$ for fixed j to obtain $P\left(A_{n} \cap A_{n+j}\right)=0$ for all $j \geq 1$. Thus, we may take all the A_{n} to be disjoint. Let $B_{n}:=\Omega \backslash U_{m>n} A_{m}$. Then

$$
\begin{aligned}
& P\left(B_{n} \Delta B_{n k}\right) \leq\left(\Sigma_{1 \leq j<k} P\left(A_{n+j} \Delta A_{n+j, k-j}\right)\right)+\Sigma_{j \geq k} P\left(A_{n+j}\right) \\
& \quad \leq 2 \Sigma_{l \leq j<k} \Sigma_{i \geq k-j} 3^{i-1} \pi_{n+j+i}+\Sigma_{j \geq k} \pi_{n+j} \\
& \quad \leq \Sigma_{j \geq k} \pi_{n+j}+2 \Sigma_{r \geq k} \pi_{n+r} \Sigma_{l \leq j<k} 3^{r-j-1} \\
& \\
& \quad \leq \Sigma_{j \geq k} \pi_{n+j}+\Sigma_{r \geq k} 3^{r-1} \pi_{n+r} \longrightarrow 0 \text { as } k \longrightarrow \infty
\end{aligned}
$$

Thus, $B_{n k} \longrightarrow B_{n}$. For each $n, P\left(A_{n}\right) \leq \pi_{n}$. So, at least for n large enough, $P\left(B_{n}\right)>0$ and

$$
P\left(A_{n} \mid B_{n}\right)=\lim _{k \rightarrow \infty} P\left(A_{n k} \mid B_{n k}\right)=\pi_{n} .
$$

For such $n, P\left(A_{n}\right)=\pi_{n}\left(1-\Sigma_{k>n} P\left(A_{k}\right)\right)$. Then for $m \geq n$, $P\left(B_{m} \mid B_{m+1}\right)=1-\pi_{m+1}$ and

$$
P\left(A_{n} \mid B_{m}\right)=\pi_{n} \Pi_{n<j \leq m}\left(1-\pi_{j}\right)=p_{n} /\left(p_{1}+\cdots+p_{m}\right)
$$

Thus

$$
P\left(A_{n}\right)=p_{n}\left(1-\Sigma_{k>m} P\left(A_{k}\right)\right) /\left(p_{1}+\cdots+p_{m}\right)
$$

Letting $m \longrightarrow \infty$ gives $P\left(A_{n}\right)=p_{n}$ for n large. Then, since $p_{1}>0, P\left(B_{n}\right)>0$ for all n and the above holds for all n (by induction downward). Thus, Theorem 2 is proved.

Letting $A_{n}=A_{t(n)}$ and $\left.A_{n}=\{ \}=t(n)\right\}$ Theorem 1 is also proved.

Example. It may happen that for every law μ on the closed interval $[0, \infty]$, there is a stopping time with law μ, even though A_{0} is trivial. Let $T=[0,1]$ and $X_{t}(\omega):=\omega t$ where ω is uniformly distributed on $[0,1]$. Let $\omega \longrightarrow g(\omega)$ have law μ. The identity $\omega \rightarrow \omega$ is measurable from $\left(\Omega, \cap_{t>0} A_{t}\right)$ into R, so g is a stopping time.

Proposition. There is a stopping time τ with any law μ on [s, ∞] iff both a) $s \geq N A(X)$ and b) for any $p \in(0,1)$ there is an event $A \in \cap_{t>s} A_{t}$ with $P(A)=p$.

Proof. By Theorem 1, a) is necessary. To show b) necessary, pick a law μ with $p=\mu\{s\}$ and let $A=\{\tau=s\}$. Conversely,
given a law μ with $\mu\{s\}=p<1$, choose A as in b) and apply Theorem 1 to $\mu^{\prime}(\cdot)=\mu(\cdot \mid(s, \infty])$ and $P^{\prime}(\cdot)=P\left(\cdot \mid A^{C}\right)$. This proves the proposition.

If C is a σ-algebra generated by atoms of size 2^{-n}, $\mathrm{n}=1,2, \ldots$, then C contains A with $\mathrm{P}(\mathrm{A})=\mathrm{p}$ for each $p \in(0,1)$, although C is purely atomic.

REFERENCE

Halmos, P. (1950), Measure Theory (Princeton, Van Nostrand).

Footnote

1. This research was partially supported by the Danish Natural Science Council and by the U.S. National Science Foundation, Grant no. MCS76-07211.
