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Stopping times with given laws

by R. M. Dudley1 and Sam Gutmann

Abstract. Given a stochastic process Xt, t b T CR, and

s ~ R, then a) iff b): a) For every probability measure p on

there is a stopping time T for Xt with law L(T) = p:

b) If At is the smallest a-algebra for which Xu are measur-

able for all u ~ t, then P restricted to At is nonatomic

for all t > s.

This note began with a question of G. Shiryaev, connected

with the following example. Let Wt be a standard Wiener pro-

cess, t ~ T = Any exponential distribution on ]0,oo]

will be shown to be the law of a stopping time. Using this, one

can obtain a standard Poisson process Pt from Wt by a non-

anticipating transformation, Pt = s  

Definitions. A probability space (Q,A,P), or A (for P), is

nonatomic iff for every A E A and 0  p  P(A) there is a

A, B E A, with P(B) = p.

A stochastic process (here) is a map X: (t,~) >Xt(~)’
t ~ where (Q,A,P) is a complete probability
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space. Each Xt has values in some measurable space (St,Ft)
where St is a set, ft is a a-algebra of subsets of St,
and Xt is measurable from A to Ft. Let At be the smal-

lest sub-a-algebra of A for which Xs is measurable for all

s ~ t and for A whenever P(B) = 0.

Let NA(X) := inf{t: At is nonatomic}.

Note. Xt is said to be nonatomic if Ft is nonatomic for

Then if Xt (or any other At-measurable random vari-

able) is nonatomic, At is nonatomic. After R. Dudley proved

Theorem 2 below, and a weaker form of Theorem 1 considering only

nonatomicity of individual Xt, S. Gutmann found the present

Theorem 1.

A stop ing time for the process Xt is a random variable

T on. S~ with values in ] -~, ~] such that for any t 6 T, E

too:  t} ~’ At.

Theorem 1. For any stochastic process Xt and s ~ R, s > NA(X)

iff for every Borel probability measure (law) ~ on 

there is a stopping time T for Xt with C(T) - u. If 

and As is nonatomic, the same holds for any  on [s,oo].

Proof. If AS is nonatomic, and  is any law on [s.oo] , then

there is an As- measurable random variable g with L(g) = u,

as follows. We take a nonatomic countably generated sub-a-algebra
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B of As. Then there is a measure-preserving map 03C6 of

(~,B,P) into [0,1] ] with Lebesgue measure (Halmos, 1950,

p. 173). Its range has outer measure 1. Let

F (t) := (]-~,t]), F-1 (x) := inf{t: F (t) _> x}. Then

g = F 1 . 03C6 is as desired.

Now {c~: g ( w )  t} is empty for t  s, and belongs to

AS A for t > s. Thus, g is a stopping time, as desired.

If for all E > 0 there is a stopping time T with uniform distri-

bution on (s,s+E) then T is As+~-measurable, hence As+ E
is nonatomic and s > NA(X).

Now suppose As has an s with At(n)
nonatomic, and p is any law on ]s,oo]. Let t ( 0 ) = +00,

Pn :_ ~ ~] t (n) , t (n-1) ] ~ , n = 1, 2, ..... By assumption,

E ~..p =1. Suppose there is a stopping time ‘~ with

Pn for all n, and {j= At(n).
Whenever pn > 0, the conditional law of P restricted to

given y = t(n), is nonatomic. Thus for each n there

is a real random variable gn such that

AI1 = t (n) ) - ~ (A n 

Let T := gn iff i = t(n). Then T is measurable and

L(T) = u. If t 6 T and t  s, {T  t} is empty. If t > s,

{T  t} = = t(n)  t(n-l)  t}~ U ~’~’- t(n)  t  t(n-1)

and gn  
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Then T is a stopping time with law p. The problem is now

reduced to the case T = {t(n)} or equivalently where T is

the set of negative integers and all At are nonatomic. This

will be treated in the following Lemma and Theorem 2.

Lemma. Given a nonatomic probability space (Q,A,P) and events

A, B, D with A C B, P(B) > 0 and P(D) > 0, there is an event

C C D such that P(CID) = P (A (B) and P(C A A) ~ 2P (B A D),

where C A A := (C’A) Ll 

Proof. Let p := P(D)P(A)/P(B), E := A HD. If p ~ P (E) ,

choose C C E with P(C) = p. Then P(C A A) = 

= P(A) - p  P(B"D) since P(A)P(B) ~ P(A)P(D) + P (A) P (B~D) .

~ P (A) P (D) + 

If p > P (E) , choose C with E C C cD and P(C) = p.

Then P (A A C) = P (A~D) + p - P (E) .

We need to prove

P (AB D) P (B) + P (A) P (D)  P (B) P (E) + 2P (B) P (B d D). Now

P (A~D)  P(B~D), and P (A) P (D)  P (A) P (B) + 

~ P(B)P(E) + P (B) P (A’BD) + P (B) P (D~B)

~ P(B)P(E) + P(B)P(B AD), as desired. In either case

C C D and P(C~D) - P(A~B), Q.E.D.

Note. If B = Q and A = B~D, then P (C A A) = P (A) + P (D) P (A)

= 2P (A) - P (A.) 2 IV 2P(B A D) as P (A) -> 0. In this case, the

constant 2 is best possible.
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Theorem 2. Given a probability space (Q,A ,P) and non-

increasing sub-a-algebras An, n = 1,2,..., A ~ A1 ~ A2 ~ ...,

such that P is nonatomic on each An, and given any 0

with = 1, there exist disjoint A ~ n A n with

P(An) = pn.

Proof. Let n(0) := 1, choose n(l) large enough so that

:= Ejn(1)pj > ~, and +~ fast enough so that

4-k for all k ~ 2. ° Let °

If we can find disjoint Bk E An(k) with P(Bk) = rk for all -

k, then we can choose An for n(k-l) ~ n  n (k) as disjoint

subsets of Bk with P (A ) = p, Thus, we

may assume PI > 0 and °°’

Let ~’n :-- ° Take An ’with ~n

for each n. Given A. for all n and for j  k, let

Bnl := n and for k > 2 let B := choose

Ank for each n by the Lemma so that Ank é An, Ank C Bnk,

~rn ( or "nk = ~’ l and

2pnk ’ ° Then

(*) Pnk ~ 2Pn+j,k-j. °

Claim: Pnk  for 2.

This will be proved by induction on k. For k = 2,~ (*) gives

as desired. For the induction step, (*) gives
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Pn.k+1 ~ ~k " "l~k~~’~k
= ~+j~[l + 2(1 + 3 + ... + 3~"~)]

= ~Jl + 2(3~-~ - l)/(3-l)j = 3~-B~

proving the Claim.

E3 ~ ~ co. ° so A . converges to some event

~n 2014~ ~~ specifically

~A~) ~ 

~~>k~’B.j-l = ~i,k~B~.
Since A~ is disjoint from for k, we

can 20142014> co for to = 0 for

all j ~ l. Thus, we may take all the A to be disjoint. Let

Bn := 03A9/Um>nAm. Then

P(Bn 0394 Bnk) ~ (03A3l~jkP(An+j 0394 An+j,k-j)) + 03A3j~kP(An+j)
~ 

~ ’j~~j ~ ~r~~r’l~k~’’’’
- ~ ~k~’ 201420142014~ 0 201420142014> co.

Thus, B~ 20142014> B~. For each n, P(A~) ~ ~. So, at least for

n large enough, P(B~) > 0 and

= 1~__,,P(A~!B~) = 

~. °
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For such n, Then for "’ ~ n,

TIm+1 and

= - °

Thus

P(An) = °

Letting gives P(An) - pn for n large. Then, since

pi > 0, P(Bn) > 0 for all n and the above holds for all n

(by induction downward). Thus, Theorem 2 is proved.

Letting An = At(n) and t (n) } Theorem 1 is

also proved.

Example. It may happen that for every law p on the closed

interval [0,~], there is a stopping time with law p, even

though Ao is trivial. Let T = [0,1] and Xt(w) := wt

where w is uniformly distributed on [0,1]. Let w -> g(w)

have law ~. The identity w -> ~ is measurable from

into R, so g is a stopping time.

Proposition. There is a stopping time T with any law p on

iff both a) s > NA(X) and b) for any p C (0,1) there

is an event A C with P(A) = p.

Proof. By Theorem 1, a) is necessary. To show b) necessary,

pick a law p with p = and let A = {T = s}. Conversely,
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given a law p with = p  1, choose A as in b) and apply

Theorem 1 to y’ (.) = and P’(’) = This

proves the proposition.

If C is a a-algebra generated by atoms of size 2 n,
n = 1,2,.. " then C contains A with P(A) = p for each

p ~ (0,1), although C is purely atomic.
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