B-spline-like bases for C 2 cubics on the Powell–Sabin 12-split
The SMAI Journal of computational mathematics, Tome S5 (2019), pp. 129-159.

For spaces of constant, linear, and quadratic splines of maximal smoothness on the Powell–Sabin 12-split of a triangle, the so-called S-bases were recently introduced. These are simplex spline bases with B-spline-like properties on the 12-split of a single triangle, which are tied together across triangles in a Bézier-like manner.

In this paper we give a formal definition of an S-basis in terms of certain basic properties. We proceed to investigate the existence of S-bases for the aforementioned spaces and additionally the cubic case, resulting in an exhaustive list. From their nature as simplex splines, we derive simple differentiation and recurrence formulas to other S-bases. We establish a Marsden identity that gives rise to various quasi-interpolants and domain points forming an intuitive control net, in terms of which conditions for C 0 -, C 1 -, and C 2 -smoothness are derived.

Publié le :
DOI : 10.5802/smai-jcm.56
Classification : 41A15, 65D07, 65D17
Mots clés : Stable bases, Powell–Sabin 12-split, Simplex splines, Marsden identity, Quasi-interpolation
Lyche, Tom 1 ; Muntingh, Georg 2

1 University of Oslo, Department of Mathematics, P.O. Box 1053, Blindern, NO-0316, Oslo, Norway
2 SINTEF Digital, Department of Mathematics and Cybernetics, P.O. Box 124 Blindern, NO-0314, Oslo, Norway
@article{SMAI-JCM_2019__S5__129_0,
     author = {Lyche, Tom and Muntingh, Georg},
     title = {B-spline-like bases for $C^2$ cubics on the {Powell{\textendash}Sabin} 12-split},
     journal = {The SMAI Journal of computational mathematics},
     pages = {129--159},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {S5},
     year = {2019},
     doi = {10.5802/smai-jcm.56},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.56/}
}
TY  - JOUR
AU  - Lyche, Tom
AU  - Muntingh, Georg
TI  - B-spline-like bases for $C^2$ cubics on the Powell–Sabin 12-split
JO  - The SMAI Journal of computational mathematics
PY  - 2019
SP  - 129
EP  - 159
VL  - S5
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.56/
DO  - 10.5802/smai-jcm.56
LA  - en
ID  - SMAI-JCM_2019__S5__129_0
ER  - 
%0 Journal Article
%A Lyche, Tom
%A Muntingh, Georg
%T B-spline-like bases for $C^2$ cubics on the Powell–Sabin 12-split
%J The SMAI Journal of computational mathematics
%D 2019
%P 129-159
%V S5
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.56/
%R 10.5802/smai-jcm.56
%G en
%F SMAI-JCM_2019__S5__129_0
Lyche, Tom; Muntingh, Georg. B-spline-like bases for $C^2$ cubics on the Powell–Sabin 12-split. The SMAI Journal of computational mathematics, Tome S5 (2019), pp. 129-159. doi : 10.5802/smai-jcm.56. http://www.numdam.org/articles/10.5802/smai-jcm.56/

[1] Ciarlet, P. G. The Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, 2002 | arXiv | DOI

[2] Clough, R. W.; Tocher, J. L. Finite element stiffness matrices for analysis of plate bending, Proceedings of the conference on Matrix Methods in Structural Mechanics, Wright-Patterson A.F.B., 1965, pp. 515-546

[3] Cohen, E.; Lyche, T.; Riesenfeld, R. F. A B-spline-like basis for the Powell–Sabin 12-split based on simplex splines, Math. Comput., Volume 82 (2013) no. 283, pp. 1667-1707 | DOI | MR | Zbl

[4] Cohen, E.; Riesenfeld, R. F.; Elber, G. Geometric modeling with splines: an introduction, A K Peters, 2001 | DOI | Zbl

[5] Cottrell, J. A.; Hughes, T. J. R.; Bazilevs, Y. Isogeometric analysis: toward integration of CAD and FEA, John Wiley & Sons, 2009, 360 pages | Zbl

[6] Davydov, O.; Yeo, W. P. Refinable C 2 piecewise quintic polynomials on Powell–Sabin-12 triangulations, J. Comput. Appl. Math., Volume 240 (2013), pp. 62-73 | DOI | MR | Zbl

[7] Dierckx, P. On calculating normalized Powell–Sabin B-splines, Comput. Aided Geom. Des., Volume 15 (1997) no. 1, pp. 61-78 | DOI | MR | Zbl

[8] Dyn, N.; Lyche, T. A Hermite subdivision scheme for the evaluation of the Powell–Sabin 12-split element, Approximation theory IX (Innovations in Applied Mathematics), Volume 2, Vanderbilt University Press, 1998, pp. 33-38 | Zbl

[9] Grošelj, J.; Speleers, H. Construction and analysis of cubic Powell–Sabin B-splines, Comput. Aided Geom. Des., Volume 57 (2017), pp. 1-22 | DOI | MR | Zbl

[10] Knuth, D. Bracket notation for the “coefficient of” operator, A Classical Mind: Essays in Honour of C. A. R. Hoare, Prentice Hall International (UK) Ltd., 1994 | arXiv

[11] Lai, M.-J.; Schumaker, L. L. Macro-elements and stable local bases for splines on Powell–Sabin triangulations, Math. Comput., Volume 72 (2003) no. 241, pp. 335-354 | DOI | MR | Zbl

[12] Lai, M.-J.; Schumaker, L. L. Spline functions on triangulations, Encyclopedia of Mathematics and Its Applications, 110, Cambridge University Press, 2007, xvi+592 pages | MR | Zbl

[13] Lyche, T.; Merrien, J.-L. Simplex Splines on the Clough–Tocher Element, Comput. Aided Geom. Des., Volume 65 (2018), pp. 76-92 | DOI | MR | Zbl

[14] Lyche, T.; Muntingh, G. A Hermite interpolatory subdivision scheme for C 2 -quintics on the Powell–Sabin 12-split, Comput. Aided Geom. Des., Volume 31 (2014) no. 7-8, pp. 464-474 | DOI | MR | Zbl

[15] Lyche, T.; Muntingh, G. Stable Simplex Spline Bases for C 3 Quintics on the Powell–Sabin 12-Split, Constr. Approx., Volume 45 (2016), pp. 1-32 | DOI | MR | Zbl

[16] Micchelli, C. A. On a numerically efficient method for computing multivariate B-splines, Multivariate Approximation Theory: Proceedings of the Conference held at the Mathematical Research Institute at Oberwolfach Black Forest, Birkhäuser, 1979, pp. 211-248 | DOI | Zbl

[17] Muntingh, G. Notebook: B-spline-like bases for C 2 cubics on the Powell–Sabin 12-split (2019) (https://github.com/georgmuntingh/SSplines/blob/master/examples/C2-cubic.ipynb)

[18] Oswald, P. Hierarchical conforming finite element methods for the biharmonic equation, SIAM J. Numer. Anal., Volume 29 (1992) no. 6, pp. 1610-1625 | DOI | MR | Zbl

[19] Powell, Michael J. D.; Sabin, Malcolm A. Piecewise quadratic approximations on triangles, ACM Trans. Math. Softw., Volume 3 (1977) no. 4, pp. 316-325 | DOI | MR | Zbl

[20] Prautzsch, H.; Boehm, W.; Paluszny, M. Bézier and B-spline techniques, Mathematics and Visualization, Springer, 2002, xiv+304 pages | DOI | Zbl

[21] Schumaker, L. L.; Sorokina, T. Smooth macro-elements on Powell–Sabin-12 splits, Math. Comput., Volume 75 (2006) no. 254, pp. 711-726 | DOI | MR | Zbl

[22] Speleers, H. A normalized basis for quintic Powell–Sabin splines, Comput. Aided Geom. Des., Volume 27 (2010) no. 6, pp. 438-457 | DOI | MR | Zbl

[23] Stangeby, I. H. Simplex splines on the Powell–Sabin 12-split: components of the finite element method, University of Oslo (2018) (Master’s thesis) | arXiv

[24] Ženíšek, A. A general theorem on triangular finite C (m) -elements, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, Volume 8 (1974) no. R-2, pp. 119-127 | Numdam | MR | Zbl

Cité par Sources :