Partial differential equations and variational methods for geometric processing of images
The SMAI Journal of computational mathematics, Tome S5 (2019), pp. 109-128.
Publié le :
DOI : 10.5802/smai-jcm.55
Buet, Blanche 1 ; Mirebeau, Jean-Marie 1 ; van Gennip, Yves 2 ; Desquilbet, François 3 ; Dreo, Johann 4 ; Barbaresco, Frédéric 5 ; Leonardi, Gian Paolo 6 ; Masnou, Simon 7 ; Schönlieb, Carola-Bibiane 8

1 Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
2 DIAM, Technical University of Delft, Netherlands
3 École Normale Supérieure de Paris, France
4 Thales Research and Technology, France
5 Thales Land & Air Systems, France
6 Dipartimento di Matematica, Università di Trento, Italy
7 Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne, France
8 DAMTP, University of Cambridge, United Kingdom
@article{SMAI-JCM_2019__S5__109_0,
     author = {Buet, Blanche and Mirebeau, Jean-Marie and van Gennip, Yves and Desquilbet, Fran\c{c}ois and Dreo, Johann and Barbaresco, Fr\'ed\'eric and Leonardi, Gian Paolo and Masnou, Simon and Sch\"onlieb, Carola-Bibiane},
     title = {Partial differential equations and variational methods for geometric processing of images},
     journal = {The SMAI Journal of computational mathematics},
     pages = {109--128},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {S5},
     year = {2019},
     doi = {10.5802/smai-jcm.55},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.55/}
}
TY  - JOUR
AU  - Buet, Blanche
AU  - Mirebeau, Jean-Marie
AU  - van Gennip, Yves
AU  - Desquilbet, François
AU  - Dreo, Johann
AU  - Barbaresco, Frédéric
AU  - Leonardi, Gian Paolo
AU  - Masnou, Simon
AU  - Schönlieb, Carola-Bibiane
TI  - Partial differential equations and variational methods for geometric processing of images
JO  - The SMAI Journal of computational mathematics
PY  - 2019
SP  - 109
EP  - 128
VL  - S5
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.55/
DO  - 10.5802/smai-jcm.55
LA  - en
ID  - SMAI-JCM_2019__S5__109_0
ER  - 
%0 Journal Article
%A Buet, Blanche
%A Mirebeau, Jean-Marie
%A van Gennip, Yves
%A Desquilbet, François
%A Dreo, Johann
%A Barbaresco, Frédéric
%A Leonardi, Gian Paolo
%A Masnou, Simon
%A Schönlieb, Carola-Bibiane
%T Partial differential equations and variational methods for geometric processing of images
%J The SMAI Journal of computational mathematics
%D 2019
%P 109-128
%V S5
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.55/
%R 10.5802/smai-jcm.55
%G en
%F SMAI-JCM_2019__S5__109_0
Buet, Blanche; Mirebeau, Jean-Marie; van Gennip, Yves; Desquilbet, François; Dreo, Johann; Barbaresco, Frédéric; Leonardi, Gian Paolo; Masnou, Simon; Schönlieb, Carola-Bibiane. Partial differential equations and variational methods for geometric processing of images. The SMAI Journal of computational mathematics, Tome S5 (2019), pp. 109-128. doi : 10.5802/smai-jcm.55. http://www.numdam.org/articles/10.5802/smai-jcm.55/

[1] Allard, W. K. On the first variation of a varifold., Ann. Math., Volume 95 (1972), pp. 417-491 | DOI | MR | Zbl

[2] Almgren, F.; Taylor, J. E.; Wang, L. Curvature-driven flows: a variational approach, SIAM J. Control Optimization, Volume 31 (1993) no. 2, pp. 387-438 | DOI | MR | Zbl

[3] Anderson, C. R. A Rayleigh–Chebyshev procedure for finding the smallest eigenvalues and associated eigenvectors of large sparse Hermitian matrices, J. Comput. Phys., Volume 229 (2010) no. 19, pp. 7477-7487 | DOI | MR | Zbl

[4] Barbaresco, F. Computation of most threatening radar trajectories areas and corridors based on fast-marching & level sets, IEEE Symposium on Computational Intelligence for Security and Defence Applications (2011), pp. 51-58

[5] Bardi, M.; Capuzzo-Dolcetta, I. Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Modern Birkhäuser Classics, Birkhäuser, 2008 | Zbl

[6] Barles, G.; Georgelin, C. A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM J. Numer. Anal., Volume 32 (1995) no. 2, pp. 484-500 | DOI | MR | Zbl

[7] Barles, G.; Soner, H. M.; Souganidis, P. E. Front propagation and phase field theory, SIAM J. Control Optimization, Volume 31 (1993) no. 2, pp. 439-469 | DOI | MR | Zbl

[8] Bertozzi, A. L.; Flenner, A. Diffuse interface models on graphs for analysis of high dimensional data, SIAM J. Multiscale Mod. Simul., Volume 10 (2012) no. 3, pp. 1090-1118 | DOI | Zbl

[9] Bogachev, V. I. Measure Theory II, Springer, 2007 | Zbl

[10] Boschand, J.; Klamt, S.; Stoll, M. Generalizing diffuse interface methods on graphs: non-smooth potentials and hypergraphs, SIAM J. Appl. Math., Volume 78 (2018) no. 3, pp. 1350-1377

[11] Braides, A. Γ-convergence for beginners, Oxford University Press, 2002 | DOI | Zbl

[12] Brakke, K. A. The motion of a surface by its mean curvature, Princeton University Press, 1978 | MR | Zbl

[13] Bresson, X.; Chan, T. F. Non-local Unsupervised Variational Image Segmentation (2008) (Technical report cam-08-67)

[14] Bronsard, L.; Kohn, R. V. Motion by mean curvature as the singular limit of Ginzburg–Landau dynamics, J. Differ. Equations, Volume 90 (1991) no. 2, pp. 211-237 | DOI | MR | Zbl

[15] Budd, J.; van Gennip, Y. Mass-preserving diffusion-based dynamics on graphs (in preparation)

[16] Budd, J.; van Gennip, Y. Graph MBO as a semi-discrete implicit Euler scheme for graph Allen–Cahn (2019) (https://arxiv.org/abs/1907.10774)

[17] Buet, B.; Leonardi, G. P.; Masnou, S. A varifold approach to surface approximation., Arch. Ration. Mech. Anal., Volume 226 (2017), pp. 639-694 | DOI | MR | Zbl

[18] Buet, B.; Leonardi, G. P.; Masnou, S. Weak and approximate curvatures of a measure: a varifold perspective. (2019) (submitted)

[19] Calatroni, L.; van Gennip, Y.; Schönlieb, C.-B.; Rowland, H.; Flenner, A. Graph clustering, variational image segmentation methods and Hough transform scale detection for object measurement in images, J. Math. Imaging Vis., Volume 57 (2017) no. 2, pp. 269-291 | DOI | MR | Zbl

[20] Calder, J. Consistency of Lipschitz learning with infinite unlabeled data and finite labeled data (2017) (https://arxiv.org/abs/1710.10364)

[21] Calder, J. The game theoretic p-Laplacian and semi-supervised learning with few labels, Nonlinearity, Volume 32 (2018) no. 1, pp. 301-330 | DOI | MR

[22] Calder, J.; Slepčev, D. Properly-weighted graph Laplacian for semi-supervised learning (2018) (https://arxiv.org/abs/1810.04351)

[23] Chen, D.; Mirebeau, J.-M.; Cohen, L. D. Global minimum for a Finsler Elastica minimal path approach, Int. J. Comput. Vision, Volume 122 (2017) no. 3, pp. 458-483 | DOI | MR

[24] Chung, F. Spectral Graph Theory, American Mathematical Society, 1997

[25] Cohen, L. D.; Kimmel, R. Global minimum for active contour models: A minimal path approach., Int. J. Comput. Vision, Volume 24 (1997) no. 1, pp. 57-78 | DOI

[26] Cucuringu, M.; Pizzoferrato, A.; van Gennip, Y. An MBO scheme for clustering and semi-supervised clustering of signed networks (2019) (https://arxiv.org/abs/1901.03091)

[27] Dal Maso, G. An introduction to Γ-convergence, Birkhäuser, 1993 | Zbl

[28] Digne, J.; Audfray, N.; Lartigue, C.; Mehdi-Souzani, C.; Morel, J.-M. Farman Institute 3D Point Sets - High Precision 3D Data Sets, IPOL Journal, Volume 1 (2011), pp. 281-291

[29] Dreo, J.; Desquilbet, F.; Barbaresco, F.; Mirebeau, J.-M. Netted multi-function radars positioning and modes selection by non-holonomic fast marching computation of highest threatening trajectories, International RADAR’19 conference, IEEE (2019)

[30] Duits, R.; Meesters, S. P. L.; Mirebeau, J.-M.; Portegies, J. M. Optimal paths for variants of the 2D and 3D Reeds–Shepp car with applications in image analysis, J. Math. Imaging Vis. (2018), pp. 1-33 | MR | Zbl

[31] Dunlop, M. M.; Slepčev, D.; Stuart, A. M.; Thorpe, M. Large data and zero noise limits of graph-based semi-supervised learning algorithms (2018) (https://arxiv.org/abs/1805:09450)

[32] Elmoataz, A.; Buyssens, P. On the connection between tug-of-war games and nonlocal PDEs on graphs, C. R. Méc. Acad. Sci. Paris, Volume 345 (2017) no. 3, pp. 177-183

[33] Elmoataz, A.; Desquesnes, X.; Lézoray, O. Non-local morphological PDEs and p-Laplacian equation on graphs with applications in image processing and machine learning, IEEE Sel. Top. Signal Process., Volume 6 (2012) no. 7, pp. 764-779 | DOI

[34] Elmoataz, A.; Desquesnes, X.; Toutain, M. On the game p-Laplacian on weighted graphs with applications in image processing and data clustering, Eur. J. Appl. Math., Volume 28 (2017), pp. 922-948 | DOI | MR | Zbl

[35] Evans, L. C. Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., Volume 42 (1993) no. 2, pp. 533-557 | DOI | MR | Zbl

[36] Fowlkes, C.; Belongie, S.; Chung, F.; Malik, J. Spectral grouping using the Nystrom method, IEEE Trans. Pattern Anal. Mach. Intell., Volume 26 (2004) no. 2, pp. 214-225 | DOI

[37] Garcia-Cardona, C.; Flenner, A.; Percus, A. G. Multiclass diffuse interface models for semi-supervised learning on graphs, Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods (ICPRAM 2013) (2013), pp. 78-86

[38] Garcia-Cardona, C.; Flenner, A.; Percus, A. G. Multiclass semi-supervised learning on graphs using Ginzburg–Landau functional minimization, Adv. Intell. Syst. Comput., Volume 318 (2015), pp. 19-135

[39] Garcia-Cardona, C.; Merkurjev, E.; Bertozzi, A. L.; Flenner, A.; Percus, A. G. Multiclass data segmentation using diffuse interface methods on graphs, IEEE Trans. Pattern Anal. Mach. Intell., Volume 36 (2014), pp. 1600-1613 | DOI | Zbl

[40] Garcia Trillos, N.; Murray, R. A new analytical approach to consistency and overfitting in regularized empirical risk minimization, Eur. J. Appl. Math., Volume 28 (2017), pp. 886-921 | DOI | MR | Zbl

[41] Garcia Trillos, N.; Murray, R. A maximum principle argument for the uniform convergence of graph Laplacian regressors (2019) (https://arxiv.org/abs/1901.10089)

[42] Garcia Trillos, N.; Slepčev, D. Continuum limit of total variation on point clouds, Arch. Ration. Mech. Anal., Volume 220 (2016) no. 1, pp. 193-241 | DOI | MR | Zbl

[43] Garcia Trillos, N.; Slepčev, D.; von Brecht, J.; Laurent, T.; Bresson, X. Consistency of Cheeger and Ratio Graph Cuts, J. Mach. Learn. Res., Volume 17 (2016), pp. 1-46 | MR | Zbl

[44] Gilboa, G.; Osher, S. J. Nonlocal Operators with Applications to Image Processing, SIAM J. Multiscale Mod. Simul., Volume 7 (2008) no. 3, pp. 1005-1028 | DOI | MR | Zbl

[45] Hafiene, Y.; Fadili, J.; Elmoataz, A. Nonlocal p-Laplacian evolution problems on graphs, SIAM J. Numer. Anal., Volume 56 (2018) no. 2, pp. 1064-1090 | DOI | MR | Zbl

[46] Hafiene, Y.; Fadili, J.; Elmoataz, A. Nonlocal p-Laplacian variational problems on graphs (2018) (https://arxiv.org/abs/1810.12817) | Zbl

[47] Hansen, N.; Müller, S. D.; Koumoutsakos, P. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)., Evol. Comput., Volume 11 (2003) no. 1, pp. 1-18 | DOI

[48] Hutchinson, J. E. C 1,α multiple function regularity and tangent cone behaviour for varifolds with second fundamental form in L p ., Geometric measure theory and the calculus of variations (Proceedings of Symposia in Pure Mathematics), Volume 44, American Mathematical Society, 1986 | DOI | MR | Zbl

[49] Hutchinson, J. E. Second fundamental form for varifolds and the existence of surfaces minimising curvature., Indiana Univ. Math. J., Volume 35 (1986) no. 1 | DOI | MR | Zbl

[50] Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models., Int. J. Comput. Vision, Volume 14 (1988), pp. 321-331 | DOI

[51] Keetch, B.; van Gennip, Y. Approximation of the Max-K-Cut via a signless graph Allen–Cahn equation (In preparation)

[52] Keetch, B.; van Gennip, Y. A Max-Cut approximation using a graph based MBO scheme (2017) (https://arxiv.org/abs/1711.02419) | Zbl

[53] Liao, W.; Rohr, K.; Wörz, S. Globally Optimal Curvature - Regularized Fast Marching For Vessel Segmentation,, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013, Springer (2013), pp. 550-557

[54] Lozes, F.; Hidane, M.; Elmoataz, A.; Lezoray, O. Nonlocal segmentation of point clouds with graphs, 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings (2013), pp. 459-462 | DOI

[55] Luckhaus, S.; Sturzenhecker, T. Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differ. Equ., Volume 3 (1995) no. 2, pp. 253-271 | DOI | MR | Zbl

[56] Luo, X.; Bertozzi, A. L. Convergence of the graph Allen–Cahn scheme, J. Stat. Phys., Volume 167 (2017) no. 3, pp. 934-958 | DOI | MR | Zbl

[57] Manfredi, J. J.; Oberman, A. M.; Sviridov, A. P. Nonlinear elliptic partial differential equations and p-harmonic functions on graphs, Differ. Integral Equ., Volume 28 (2015) no. 1–2, pp. 79-102 | MR | Zbl

[58] Medvedev, G. S. The nonlinear heat equation on dense graphs and graph limits, SIAM J. Math. Anal., Volume 46 (2014) no. 4, pp. 2743-2766 | DOI | MR | Zbl

[59] Meng, Z.; Merkurjev, E.; Koniges, A.; Bertozzi, A. L. Hyperspectral Image Classification Using Graph Clustering Methods, IPOL Journal, Volume 7 (2017), pp. 218-245 | DOI | MR

[60] Merkurjev, E.; Garcia-Cardona, C.; Bertozzi, A. L.; Flenner, A.; Percus, A. G. Diffuse interface methods for multiclass segmentation of high-dimensional data, Appl. Math. Lett., Volume 33 (2014), pp. 29-34 | DOI | MR | Zbl

[61] Merkurjev, E.; Kostic, T.; Bertozzi, A. L. An MBO scheme on graphs for segmentation and image processing, SIAM J. Imaging Sci., Volume 6 (2013) no. 4, pp. 1903-1930 | DOI | Zbl

[62] Merriman, B.; Bence, J. K.; Osher, S. J. Motion of multiple functions: a level set approach, J. Comput. Phys., Volume 112 (1994) no. 2, pp. 334-363 | DOI | MR | Zbl

[63] Mirebeau, J.-M. Fast-marching methods for curvature penalized shortest paths., J. Math. Imaging Vis. (2017), pp. 1-32

[64] Mirebeau, J.-M.; Dreo, J. Automatic differentiation of non-holonomic fast marching for computing most threatening trajectories under sensors surveillance., Geometrical Science of Information (2017) | DOI | Zbl

[65] Mirebeau, J.-M.; Portegies, J. M. Hamiltonian fast marching: A numerical solver for anisotropic and non-holonomic eikonal PDEs., IPOL Journal, Volume 9 (2019), pp. 47-93 | DOI | MR

[66] Modica, L. The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., Volume 98 (1987) no. 2, pp. 123-142 | DOI | MR | Zbl

[67] Modica, L.; Mortola, S. Un esempio di Γ-convergenza, Boll. Unione Mat. Ital., Volume 5 (1977) no. 14-B, pp. 285-299 | MR | Zbl

[68] Nyström, E. J. Über die Praktische Auflösung von Linearen Integralgleichungen mit Anwendungen auf Randwertaufgaben der Potentialtheorie, Commentat. Phys.-Math., Volume 4 (1928) no. 15, pp. 1-52 | Zbl

[69] Oberman, A. M.; Calder, J. Lipschitz regularized deep neural networks converge and generalize (2018) (https://arxiv.org/abs/1808.09540)

[70] Sethian, J. A. A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. USA, Volume 93 (1996) no. 4, pp. 1591-1595 | DOI | MR | Zbl

[71] Shi, Z.; Wang, B.; Osher, S. J. Error estimation of weighted nonlocal Laplacian on random point cloud (2018) (https://arxiv.org/abs/1809.08622)

[72] Simon, L. Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, Volume 3, Australian National University Centre for Mathematical Analysis (1983) | MR | Zbl

[73] Skolnik, M. I. Radar handbook, McGraw-Hill Book Co., 1970

[74] Slepčev, D.; Thorpe, M. Analysis of p-Laplacian regularization in semi-supervised learning (2017) (https://arxiv.org/abs/1707.06213)

[75] Strandmark, P.; Ulen, J.; Kahl, F.; Grady, L. Shortest Paths with Curvature and Torsion, 2013 IEEE International Conference on Computer Vision(ICCV), IEEE (2013), pp. 2024-2031 | DOI

[76] Strode, C. Optimising multistatic sensor locations using path planning and game theory, IEEE Symposium on Computational Intelligence for Security and Defence Applications, IEEE (2011), pp. 9-16

[77] Taylor, J. E. Anisotropic interface motion, Mathematics of Microstructure Evolution (Empmd Monograph Series), Volume 4, The Minerals, Metals & Materials Society, 1996, pp. 135-148

[78] Thorpe, M.; Theil, F. Asymptotic Analysis of the Ginzburg–Landau Functional on Point Clouds, Proc. R. Soc. Edinb., Sect. A, Math., Volume 149 (2019), pp. 387-427 | DOI | MR | Zbl

[79] Thorpe, M.; van Gennip, Y. Deep Limits of Residual Neural Networks (2018) (https://arxiv.org/abs/1810.11741)

[80] Tudisco, F.; Hein, M. A nodal domain theorem and a higher-order Cheeger inequality for the graph p-Laplacian, J. Spectr. Theory, Volume 8 (2018) no. 3, pp. 883-908 | DOI | MR | Zbl

[81] van Gennip, Y. An MBO scheme for minimizing the graph Ohta–Kawasaki functional, J. Nonlinear Sci. (2018), pp. 1-49

[82] van Gennip, Y.; Bertozzi, A. L. Γ-convergence of graph Ginzburg–Landau functionals, Adv. Differ. Equ., Volume 17 (2012) no. 11/12, pp. 1115-1180 | MR | Zbl

[83] van Gennip, Y.; Guillen, N.; Osting, B.; Bertozzi, A. L. Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs, Milan J. Math., Volume 82 (2014) no. 1, pp. 3-65 | DOI | MR | Zbl

[84] von Luxburg, U. A tutorial on spectral clustering, Statistics and Computing, Volume 17 (2007) no. 4, pp. 395-416 | DOI | MR

[85] Wagner, D.; Wagner, F. Between min cut and graph bisection, International Symposium on Mathematical Foundations of Computer Science, Springer (1993), pp. 744-750 | Zbl

Cité par Sources :