Projective and telescopic projective integration for the nonlinear BGK and Boltzmann equations
The SMAI Journal of computational mathematics, Volume 5 (2019), pp. 53-88.

We present high-order, fully explicit projective integration schemes for nonlinear collisional kinetic equations such as the BGK and Boltzmann equation. The methods first take a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution. Then, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. The procedure can be recursively repeated on a hierarchy of projective levels to construct telescopic projective integration methods. Based on the spectrum of the linearized collision operator, we deduce that the computational cost of the method is essentially independent of the stiffness of the problem: with an appropriate choice of inner step size, the time step restriction on the outer time step, as well as the number of inner time steps, is independent of the stiffness of the (collisional) source term. In some cases, the number of levels in the telescopic hierarchy depends logarithmically on the stiffness. We illustrate the method with numerical results in one and two spatial dimensions.

Published online:
DOI: 10.5802/smai-jcm.43
Classification: 82B40, 76P05, 65M70, 65M08, 65M12
Keywords: Boltzmann equation, BGK equation, Projective Integration, spectral theory, fast spectral scheme
Melis, Ward 1; Rey, Thomas 2; Samaey, Giovanni 1

1 Department of Computer Science, K.U. Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
2 Univ. Lille, CNRS, UMR 8524, Inria – Laboratoire Paul Painlevé, F-59000 Lille, France
@article{SMAI-JCM_2019__5__53_0,
     author = {Melis, Ward and Rey, Thomas and Samaey, Giovanni},
     title = {Projective and telescopic projective integration for the nonlinear {BGK} and {Boltzmann} equations},
     journal = {The SMAI Journal of computational mathematics},
     pages = {53--88},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {5},
     year = {2019},
     doi = {10.5802/smai-jcm.43},
     mrnumber = {3928535},
     zbl = {07090179},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.43/}
}
TY  - JOUR
AU  - Melis, Ward
AU  - Rey, Thomas
AU  - Samaey, Giovanni
TI  - Projective and telescopic projective integration for the nonlinear BGK and Boltzmann equations
JO  - The SMAI Journal of computational mathematics
PY  - 2019
SP  - 53
EP  - 88
VL  - 5
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.43/
DO  - 10.5802/smai-jcm.43
LA  - en
ID  - SMAI-JCM_2019__5__53_0
ER  - 
%0 Journal Article
%A Melis, Ward
%A Rey, Thomas
%A Samaey, Giovanni
%T Projective and telescopic projective integration for the nonlinear BGK and Boltzmann equations
%J The SMAI Journal of computational mathematics
%D 2019
%P 53-88
%V 5
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.43/
%R 10.5802/smai-jcm.43
%G en
%F SMAI-JCM_2019__5__53_0
Melis, Ward; Rey, Thomas; Samaey, Giovanni. Projective and telescopic projective integration for the nonlinear BGK and Boltzmann equations. The SMAI Journal of computational mathematics, Volume 5 (2019), pp. 53-88. doi : 10.5802/smai-jcm.43. http://www.numdam.org/articles/10.5802/smai-jcm.43/

[1] Alexandre, R.; Desvillettes, L.; Villani, C.; Wennberg, B. Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., Volume 152 (2000) no. 4, pp. 327-355 | DOI | MR | Zbl

[2] Aràndiga, F.; Baeza, A.; Belda, A. M.; Mulet, P. Analysis of WENO Schemes for Full and Global Accuracy, SIAM J. Numer. Anal., Volume 49 (2011) no. 2, pp. 893-915 | MR | Zbl

[3] Ascher, U. M; Ruuth, S. J; Wetton, B. TR Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., Volume 32 (1995) no. 3, pp. 797-823 | DOI | MR | Zbl

[4] Balsara, D. S.; Shu, C.-W. Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy, J. Comput. Phys., Volume 160 (2000) no. 2, pp. 405-452 | MR | Zbl

[5] Baranger, C.; Mouhot, C. Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Ibér., Volume 21 (2005) no. 3, pp. 819-841 | DOI | MR | Zbl

[6] Bennoune, M.; Lemou, M.; Mieussens, L. Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys., Volume 227 (2008), pp. 3781-3803 | DOI | MR | Zbl

[7] Besse, C.; Goudon, T. Derivation of a non-local model for diffusion asymptotics—application to radiative transfer problems, Commun. Comput. Phys, Volume 8 (2010) no. 5, 1139 pages | MR | Zbl

[8] Bhatnagar, P.L.; Gross, E.P.; Krook, M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., Volume 94 (1954) no. 3 | DOI | Zbl

[9] Bird, G.A. Molecular gas dynamics and the direct simulation of gas flows, Oxford University Press, 1994, 479 pages

[10] Boscarino, S.; Pareschi, L.; Russo, G. Implicit-explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit, SIAM J. Sci. Comput., Volume 35 (2013) no. 1, p. A22-A51 | DOI | MR | Zbl

[11] Buet, C.; Cordier, S. An asymptotic preserving scheme for hydrodynamics radiative transfer models, Numer. Math., Volume 108 (2007) no. 2, pp. 199-221 | Zbl

[12] Caflisch, R. E Monte carlo and quasi-monte carlo methods, Acta Numer., Volume 7 (1998), pp. 1-49 | DOI | MR | Zbl

[13] Cai, Z.; Li, R. Numerical Regularized Moment Method of Arbitrary Order for Boltzmann-BGK Equation, SIAM J. Sci. Comput., Volume 32 (2010) no. 5, pp. 2875-2907 | DOI | MR | Zbl

[14] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988, xiv+557 pages | DOI

[15] Carleman, T. Sur la théorie de l’équation intégrodifférentielle de Boltzmann, Acta Math., Volume 60 (1933) no. 1, pp. 91-146 | DOI | MR | Zbl

[16] Carrillo, J.-A.; Goudon, T.; Lafitte, P. Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes, J. Comput. Phys., Volume 227 (2008) no. 16, pp. 7929-7951 | DOI | MR | Zbl

[17] Cercignani, C. The Boltzmann Equation and Its Applications, Springer, 1988 | DOI | Zbl

[18] Cercignani, C.; Illner, R.; Pulvirenti, M. The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994, viii+347 pages | MR | Zbl

[19] Coulombel, J.-F.; Golse, F.; Goudon, T. Diffusion approximation and entropy-based moment closure for kinetic equations, Asymptotic Anal., Volume 45 (2005) no. 1, 2, pp. 1-39 | MR | Zbl

[20] Degond, P. Asymptotic-Preserving Schemes for Fluid Models of Plasmas, Panoramas et Syntheses, Volume SMF (2014) | Zbl

[21] Dimarco, G.; Pareschi, L. Asymptotic preserving implicit-explicit Runge-Kutta methods for nonlinear kinetic equations, SIAM J. Numer. Anal., Volume 51 (2013) no. 2, pp. 1064-1087 | DOI | MR | Zbl

[22] Dimarco, G.; Pareschi, L. Numerical methods for kinetic equations, Acta Numer., Volume 23 (2014), pp. 369-520 | DOI | MR | Zbl

[23] E, W.; Engquist, B.; Li, X.; Ren, W.; Vanden-Eijnden, E. Heterogeneous multiscale methods: a review, Commun. Comput. Phys, Volume 2 (2007) no. 3, pp. 367-450 | MR | Zbl

[24] Ellis, R.S.; Pinsky, R.S. The First and Second Fluid Approximations to the Linearized Boltzmann Equation, J. Math. Pures Appl., Volume 54 (1975) no. 9, pp. 125-156 | MR

[25] Filbet, F. On deterministic approximation of the Boltzmann equation in a bounded domain, Multiscale Model. Simul., Volume 10 (2012) no. 3, pp. 792-817 (Preprint) | MR | Zbl

[26] Filbet, F.; Jin, S. A Class of Asymptotic-Preserving Schemes for Kinetic Equations and Related Problems with Stiff Sources, J. Comput. Phys., Volume 229 (2010) no. 20, pp. 7625-7648 | DOI | MR | Zbl

[27] Filbet, F.; Mouhot, C. Analysis of Spectral Methods for the Homogeneous Boltzmann Equation, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 1947-1980 | DOI | MR | Zbl

[28] Filbet, F.; Mouhot, C.; Pareschi, L. Solving the Boltzmann Equation in N log2 N, SIAM J. Sci. Comput., Volume 28 (2007) no. 3, pp. 1029-1053 | DOI

[29] Gear, C.W.; Kevrekidis, I. G. Telescopic projective methods for parabolic differential equations, J. Comput. Phys., Volume 187 (2003) no. 1, pp. 95-109 | MR | Zbl

[30] Gear, C.W.; Kevrekidis, I.G. Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum, SIAM J. Sci. Comput., Volume 24 (2003) no. 4, pp. 1091-1106 | DOI | MR

[31] Gerolymos, G. A.; Sénéchal, D.; Vallet, I. Very-high-order WENO schemes, J. Comput. Phys., Volume 228 (2009) no. 23, pp. 8481-8524 | DOI | MR | Zbl

[32] Godillon-Lafitte, P.; Goudon, T. A coupled model for radiative transfer: Doppler effects, equilibrium, and nonequilibrium diffusion asymptotics, Multiscale Model. Simul., Volume 4 (2005) no. 4, pp. 1245-1279 | MR | Zbl

[33] Golse, François The Boltzmann equation and its hydrodynamic limits, Handbook of Differential Equations: Evolutionary Equations Vol. 2 (Dafermos, C.n; Feireisl, E., eds.), North-Holland, 2005, pp. 159-303

[34] Gosse, L.; Toscani, G. Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes, SIAM J. Numer. Anal., Volume 41 (2003) no. 2, pp. 641-658 | DOI | MR | Zbl

[35] Gosse, L.; Toscani, G. Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation, Numer. Math., Volume 98 (2004) no. 2, pp. 223-250 | MR | Zbl

[36] Henrick, A. K.; Aslam, T. D.; Powers, J. M. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points, J. Comput. Phys., Volume 207 (2005), pp. 542-567 | DOI | Zbl

[37] Jiang, G.-S.; Shu, C.-W. Efficient implementation of weighted WENO schemes, J. Comput. Phys., Volume 126 (1996), pp. 202-228 | DOI

[38] Jin, S. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations, SIAM J. Sci. Comput., Volume 21 (1999) no. 2, pp. 441-454 | DOI | MR | Zbl

[39] Jin, S. Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review, Riv. Math. Univ. Parma (N.S.), Volume 3 (2012) no. 2, pp. 177-216 | MR | Zbl

[40] Jin, S.; Pareschi, L.; Toscani, G. Uniformly accurate diffusive relaxation schemes for multiscale transport equations, SIAM J. Numer. Anal., Volume 38 (2000) no. 3, pp. 913-936 | DOI | MR | Zbl

[41] Kevrekidis, I. G; Gear, C. W.; Hyman, J. M.; Kevrekidid, P. G.; Runborg, O.; Theodoropoulos, C. Equation-free, coarse-grained multiscale computation: Enabling mocroscopic simulators to perform system-level analysis, Commun. Math. Sci., Volume 1 (2003) no. 4, pp. 715-762 | Zbl

[42] Klar, A. An asymptotic preserving numerical scheme for kinetic equations in the low Mach number limit, SIAM J. Numer. Anal., Volume 36 (1999) no. 5, pp. 1507-1527 | DOI | MR | Zbl

[43] Klar, A. A numerical method for kinetic semiconductor equations in the drift-diffusion limit, SIAM J. Sci. Comput., Volume 20 (1999) no. 5, p. 1696-1712 (electronic) | DOI | MR | Zbl

[44] Kurganov, A.; Tsynkov, S. On spectral accuracy of quadrature formulae based on piecewise polynomial interpolations, IMA J. of Math. Anal., Volume 25 (2005) no. 4

[45] Lafitte, P.; Lejon, A.; Samaey, G. A high-order asymptotic-preserving scheme for kinetic equations using projective integration, SIAM J. Numer. Anal., Volume 54 (2016) no. 1, pp. 1-33 | MR | Zbl

[46] Lafitte, P.; Melis, W.; Samaey, G. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws, J. Comput. Phys., Volume 340 (2017), pp. 1-25 | DOI | MR | Zbl

[47] Lafitte, P.; Samaey, G. Asymptotic-preserving projective integration schemes for kinetic equations in the diffusion limit, SIAM J. Sci. Comput., Volume 34 (2012) no. 2, p. A579-A602 | DOI | MR | Zbl

[48] Lee, S. L.; Gear, C. W. Second-order accurate projective integrators for multiscale problems, J. Comput. Appl. Math., Volume 201 (2007) no. 1, pp. 258-274 | MR | Zbl

[49] Lemou, M.; Mieussens, L. A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput., Volume 31 (2008) no. 10, pp. 334-368 | DOI | MR | Zbl

[50] Liu, X.-D.; Osher, S.; Chan, T. Weighted essentially non-oscillatory schemes, J. Comput. Phys., Volume 115 (1994), pp. 200-212 | DOI | MR | Zbl

[51] M-N., Colin P.; L., Wladimir; Passy, J.-C. A Well-posed Kelvin-Helmholtz Instability Test and Comparison, Astrophys. J. Suppl. Ser., Volume 201 (2012) no. 2, 18 pages | DOI

[52] Melis, W.; Samaey, G. Telescopic projective integration for kinetic equations with multiple relaxation times, J. Sci. Comput., Volume 76 (2018), 697–726 pages (arXiv preprint # 1608.07972) | arXiv | DOI | MR | Zbl

[53] Mouhot, C.; Pareschi, L. Fast algorithms for computing the Boltzmann collision operator, Math. Comp., Volume 75 (2006) no. 256, p. 1833-1852 (electronic) | DOI | MR | Zbl

[54] Nicolaenko, B. Dispersion Laws for Plane Wave Propagation, The Boltzmann Equation Seminar - 1970 to 1971 (Grunbaum, F., ed.), Courant Institute of Mathematical Sciences (1971), pp. 125-172

[55] Pareschi, L.; Russo, G. Numerical Solution of the Boltzmann Equation I : Spectrally Accurate Approximation of the Collision Operator, SIAM J. Numer. Anal., Volume 37 (2000) no. 4, pp. 1217-1245 | DOI | MR | Zbl

[56] Rico-Martinez, R.; Gear, C. W.; Kevrekidis, I. G. Coarse projective kMC integration: forward/reverse initial and boundary value problems, J. Comput. Phys., Volume 196 (2004) no. 2, pp. 474-489 | Zbl

[57] Saint-Raymond, L. Hydrodynamic Limits of the Boltzmann Equation, Hydrodynamic Limits of the Boltzmann Equation, Springer, 2009 no. n° 1971 https://books.google.fr/books?id=ROUILXXb7UUC | Zbl

[58] Shu, C.-W. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws (1998) (Technical report) | Zbl

[59] Shu, C.-W. High Order ENO and WENO Schemes for Computational Fluid Dynamics, Advanced Numerical Approximations of Nonlinear Hyperbolic Equations (Quarteroni, A., ed.) (Lect. Notes Comput. Sci. Eng.), Volume 9, Springer, Berlin, 1999, pp. 439-582 | MR

[60] Sone, Y. Molecular gas dynamics: theory, techniques, and applications, Springer Science & Business Media, 2007 | Zbl

[61] Struchtrup, H. Macroscopic transport equations for rarefied gas flows, Interaction of Mechanics and Mathematics, Springer, 2005 | DOI | Zbl

[62] Torrilhon, M. Two-dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations, Mult. Mod. & Sim., Volume 5 (2006) no. 3, pp. 695-728 | MR | Zbl

[63] Villani, C. A Review of Mathematical Topics in Collisional Kinetic Theory (Friedlander, Suzanne; Serre, Denis, eds.), Elsevier Science, 2002, 211 pages

[64] Von Helmoltz, H Über Discontinuierliche Flüssigkeits-Bewegungen [On the Discontinuous Movements of Fluids], Monatsberichte der Königlichen Preussiche Akademie der Wissenschaften zu Berlin, Volume 23 (1868) no. 215-228

Cited by Sources: