Maximum-principle-satisfying second-order Intrusive Polynomial Moment scheme
The SMAI Journal of computational mathematics, Tome 5 (2019), pp. 23-51.

Using standard intrusive techniques when solving hyperbolic conservation laws with uncertainties can lead to oscillatory solutions as well as nonhyperbolic moment systems. The Intrusive Polynomial Moment (IPM) method ensures hyperbolicity of the moment system while restricting oscillatory over- and undershoots to specified bounds. In this contribution, we derive a second-order discretization of the IPM moment system which fulfills the maximum principle. This task is carried out by investigating violations of the specified bounds due to the errors from the numerical optimization required by the scheme. This analysis gives weaker conditions on the entropy that is used, allowing the choice of an entropy which enables choosing the exact minimal and maximal value of the initial condition as bounds. Solutions calculated with the derived scheme are nonoscillatory while fulfilling the maximum principle. The second-order accuracy of our scheme leads to significantly reduced numerical costs.

Publié le :
DOI : 10.5802/smai-jcm.42
Classification : 35L65, 35R60, 65M08
Mots clés : uncertainty quantification, conservation laws, maximum principle, moment system, hyperbolic, oscillations
Kusch, Jonas 1 ; Alldredge, Graham W. 2 ; Frank, Martin 1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
2 FU Berlin, Berlin, Germany
@article{SMAI-JCM_2019__5__23_0,
     author = {Kusch, Jonas and Alldredge, Graham W. and Frank, Martin},
     title = {Maximum-principle-satisfying second-order {Intrusive} {Polynomial} {Moment} scheme},
     journal = {The SMAI Journal of computational mathematics},
     pages = {23--51},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {5},
     year = {2019},
     doi = {10.5802/smai-jcm.42},
     mrnumber = {3928534},
     zbl = {07090178},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.42/}
}
TY  - JOUR
AU  - Kusch, Jonas
AU  - Alldredge, Graham W.
AU  - Frank, Martin
TI  - Maximum-principle-satisfying second-order Intrusive Polynomial Moment scheme
JO  - The SMAI Journal of computational mathematics
PY  - 2019
SP  - 23
EP  - 51
VL  - 5
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.42/
DO  - 10.5802/smai-jcm.42
LA  - en
ID  - SMAI-JCM_2019__5__23_0
ER  - 
%0 Journal Article
%A Kusch, Jonas
%A Alldredge, Graham W.
%A Frank, Martin
%T Maximum-principle-satisfying second-order Intrusive Polynomial Moment scheme
%J The SMAI Journal of computational mathematics
%D 2019
%P 23-51
%V 5
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.42/
%R 10.5802/smai-jcm.42
%G en
%F SMAI-JCM_2019__5__23_0
Kusch, Jonas; Alldredge, Graham W.; Frank, Martin. Maximum-principle-satisfying second-order Intrusive Polynomial Moment scheme. The SMAI Journal of computational mathematics, Tome 5 (2019), pp. 23-51. doi : 10.5802/smai-jcm.42. http://www.numdam.org/articles/10.5802/smai-jcm.42/

[1] Alldredge, G.; Hauck, C. D; Tits, A. L. High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem, SIAM Journal on Scientific Computing, Volume 34 (2012) no. 4, p. B361-B391 | MR | Zbl

[2] Alldredge, G. W.; Hauck, C. D.; OĹeary, D. P.; Tits, A. L. Adaptive change of basis in entropy-based moment closures for linear kinetic equations, Journal of Computational Physics, Volume 258 (2014), pp. 489-508 | DOI | MR | Zbl

[3] Bell, J. B.; Dawson, C. N.; Shubin, G. R. An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions, Journal of Computational Physics, Volume 74 (1988) no. 1, pp. 1-24 | Zbl

[4] Canuto, C.; Quarteroni, A. Approximation results for orthogonal polynomials in Sobolev spaces, Mathematics of Computation, Volume 38 (1982) no. 157, pp. 67-86 | DOI | MR | Zbl

[5] Case, K. M; Zweifel, P. F. Linear transport theory, Addison-Wesley Pub. Co., 1967 | Zbl

[6] Chandrasekhar, S. Stochastic problems in physics and astronomy, Reviews of modern physics, Volume 15 (1943) no. 1, pp. 1-89 | DOI | MR | Zbl

[7] Colella, P. Multidimensional upwind methods for hyperbolic conservation laws, Journal of Computational Physics, Volume 87 (1990) no. 1, pp. 171-200 | MR | Zbl

[8] Després, B.; Poëtte, G.; Lucor, D. Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method, Springer International Publishing (2013), pp. 105-149

[9] Dubroca, B.; Klar, A. Half-moment closure for radiative transfer equations, Journal of Computational Physics, Volume 180 (2002) no. 2, pp. 584-596 | Zbl

[10] Garrett, C. K.; Hauck, C.; Hill, J. Optimization and large scale computation of an entropy-based moment closure, Journal of Computational Physics, Volume 302 (2015), pp. 573-590 | DOI | MR | Zbl

[11] Ghanem, R. G; Spanos, P. D. Stochastic Finite Elements: A Spectral Approach, Dover, 2003 | Zbl

[12] Gottlieb, D.; Xiu, D. Galerkin method for wave equations with uncertain coefficients, Commun. Comput. Phys, Volume 3 (2008) no. 2, pp. 505-518 | MR | Zbl

[13] Gottlieb, S.; Shu, C.-W.; Tadmor, E. Strong stability-preserving high-order time discretization methods, SIAM review, Volume 43 (2001) no. 1, pp. 89-112 | DOI | MR | Zbl

[14] Guermond, J.-L.; Nazarov, M.; Popov, B.; Yang, Y. A second-order maximum principle preserving Lagrange finite element technique for nonlinear scalar conservation equations, SIAM Journal on Numerical Analysis, Volume 52 (2014) no. 4, pp. 2163-2182 | DOI | MR | Zbl

[15] Hauck, C.; McClarren, R. Positive P N Closures, SIAM Journal on Scientific Computing, Volume 32 (2010) no. 5, pp. 2603-2626 | MR | Zbl

[16] Hauck, C. D. High-order entropy-based closures for linear transport in slab geometry, Commun. Math. Sci, Volume 9 (2011) no. 1, pp. 187-205 | DOI | MR | Zbl

[17] Holden, H.; Risebro, N. H. Front tracking for hyperbolic conservation laws, 152, Springer, 2015 | MR | Zbl

[18] Kusch, J. Uncertainty Quantification for Hyperbolic Equations, RWTH Aachen University (2015), pp. 1-23

[19] LeVeque, R. J. Numerical Methods for Conservation Laws, Birkhäuser Verlag Basel, 1992 | Zbl

[20] LeVeque, R. J. Nonlinear conservation laws and finite volume methods, Computational methods for astrophysical fluid flow, Springer, 1998, pp. 1-159 | Zbl

[21] Levermore, C. D. Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, Volume 83 (1996) no. 5-6, pp. 1021-1065 | DOI | MR | Zbl

[22] Lewis, E. E.; Miller, W. F. Computational Methods of Neutron Transport, John Wiley and Sons, Inc., New York, NY, 1984 | Zbl

[23] Liu, X.-D. A maximum principle satisfying modification of triangle based adapative stencils for the solution of scalar hyperbolic conservation laws, SIAM journal on numerical analysis, Volume 30 (1993) no. 3, pp. 701-716 | DOI | MR

[24] Liu, X.-D.; Osher, S. Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I, SIAM Journal on Numerical Analysis, Volume 33 (1996) no. 2, pp. 760-779 | DOI | MR | Zbl

[25] Poëtte, G.; Després, B.; Lucor, D. Uncertainty quantification for systems of conservation laws, Journal of Computational Physics, Volume 228 (2009) no. 7, pp. 2443-2467 | DOI | MR

[26] Poëtte, G.; Després, B.; Lucor, D. Treatment of uncertain material interfaces in compressible flows, Computer Methods in Applied Mechanics and Engineering, Volume 200 (2011) no. 1, pp. 284-308 | MR | Zbl

[27] Poëtte, G.; Després, B.; Lucor, D. Uncertainty propagation for systems of conservation laws, high order stochastic spectral methods, Spectral and High Order Methods for Partial Differential Equations, Springer, 2011, pp. 293-305 | DOI | Zbl

[28] Pomraning, G. C. The Equations of Radiation Hydrodynamics, Oxford, 1973

[29] Shu, C.-W. Total-variation-diminishing time discretizations, SIAM Journal on Scientific and Statistical Computing, Volume 9 (1988) no. 6, pp. 1073-1084 | DOI | MR | Zbl

[30] Wiener, N. The homogeneous chaos, American Journal of Mathematics, Volume 60 (1938) no. 4, pp. 897-936 | MR | Zbl

[31] Xiu, D.; Em Karniadakis, G. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Computer Methods in Applied Mechanics and Engineering, Volume 191 (2002) no. 43, pp. 4927-4948 | DOI | MR | Zbl

[32] Zhang, X.; Shu, C.-W. On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, Journal of Computational Physics, Volume 229 (2010) no. 23, pp. 8918-8934 | DOI | MR | Zbl

[33] Zhang, X.; Shu, C.-W. Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (2011) | Zbl

Cité par Sources :