Contrôlabilité de quelques équations cinétiques collisionnelles et non collisionnelles : Fokker-Planck et Vlasov-Navier-Stokes
Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no. 5, 22 p.

Dans cet exposé nous présentons quelques résultats de contrôle pour les équations cinétiques. En particulier, nous nous concentrons sur deux modèles importants provenant de la littérature physique : l’équation de Fokker-Planck et le système de Vlasov-Navier-Stokes. Nous présentons les résultats obtenus dans le premier cas, de nature hypoellitique, dans [41], grâce à l’utilisation d’une inégalité spectrale pour le laplacien dans tout l’espace. Dans le cas non-collisionnel, nous présentons les résultats obtenus dans [50, 51] grâce à l’utilisation de la méthode du retour.

Publié le :
DOI : 10.5802/slsedp.107
Moyano, Iván 1

1 Laboratoire Jacques-Louis Lions, UPMC - Sorbonne Universités 4 place Jussieu 75252, Paris, France
@article{SLSEDP_2016-2017____A5_0,
     author = {Moyano, Iv\'an},
     title = {Contr\^olabilit\'e de quelques \'equations cin\'etiques collisionnelles et non collisionnelles~: {Fokker-Planck} et {Vlasov-Navier-Stokes}},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:5},
     pages = {1--22},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2016-2017},
     doi = {10.5802/slsedp.107},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/slsedp.107/}
}
TY  - JOUR
AU  - Moyano, Iván
TI  - Contrôlabilité de quelques équations cinétiques collisionnelles et non collisionnelles : Fokker-Planck et Vlasov-Navier-Stokes
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:5
PY  - 2016-2017
SP  - 1
EP  - 22
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.107/
DO  - 10.5802/slsedp.107
LA  - fr
ID  - SLSEDP_2016-2017____A5_0
ER  - 
%0 Journal Article
%A Moyano, Iván
%T Contrôlabilité de quelques équations cinétiques collisionnelles et non collisionnelles : Fokker-Planck et Vlasov-Navier-Stokes
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:5
%D 2016-2017
%P 1-22
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.107/
%R 10.5802/slsedp.107
%G fr
%F SLSEDP_2016-2017____A5_0
Moyano, Iván. Contrôlabilité de quelques équations cinétiques collisionnelles et non collisionnelles : Fokker-Planck et Vlasov-Navier-Stokes. Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no. 5, 22 p. doi : 10.5802/slsedp.107. http://www.numdam.org/articles/10.5802/slsedp.107/

[1] C. Bardos, G. Lebeau and J. Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. vol. 30 :5, pp. 1024–1065. 1992. | DOI | MR | Zbl

[2] K. Beauchard and E. Zuazua. Some controllability results for the 2D Kolmogorov equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 26, pp. 1793-1815, 2009. | DOI | Numdam | MR | Zbl

[3] K. Beauchard. Null controllability of Kolmogorov-type equations. Mathematics of Control, Signals, and Systems, vol. 26 :1, pp. 145-176, 2014. | DOI | MR | Zbl

[4] K. Beauchard, B. Helffer, R. Henry and L. Robbiano. Degenerate parabolic operators of Kolmogorov type with a geometric control condition. ESAIM Control Opt. Calc. Var. Vol.21. pp. 487–512. 2015. | DOI | MR | Zbl

[5] K. Beauchard and K. Pravda-Starov. Null-controllability of hypoelliptic quadratic differential equations. 2016. | arXiv | DOI | MR | Zbl

[6] A. Benabdallah, Y. Dermenjian, J. Le Rousseau. On the controllability of linear parabolic equations with an arbitrary control location for stratified media. C. R. Acad. Sci. Paris, Ser. I, vol. 344 :6, pp. 357-362, 2007. | DOI | MR | Zbl

[7] F. Boyer, F. Hubert and J. Le Rousseau. Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations. J. Math. Pures Appl. vol. 93, pp. 240-276, 2010. | DOI | MR | Zbl

[8] F. Bouchut. Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl., vol. 81 :11. pp. 1135–1159. 2002. | DOI | MR | Zbl

[9] L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa. Global existence of solutions for the coupled Vlasov and Navier-Stokes equations. Diff. and Int. Eq., vol. 22 :11-12, 2009. | Zbl

[10] L. Boudin, C. Grandmont, A. Lorz and A. Moussa. Modelling and numerics for respiratory aerosols. To appear in Comm. in Comput. Physics. 2015. | DOI | MR | Zbl

[11] V. Cabanillas, S. de Menezes and E. Zuazua. Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms. J. Optim. Theory Appl. vol. 110, pp. 245-264. 2001, | DOI | MR | Zbl

[12] P. Cannarsa, P. Martinez and J. Vancostenoble. Null controllability of the heat equation in unbounded domains by a finite measure control region. ESAIM Control Opt. Calc. Var., vol. 10 :3, pp. 381-408, 2004. | DOI | MR | Zbl

[13] S. Chandrasekharan. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. vol. 15 :1. 1943. | DOI | MR

[14] J.-M. Coron and A. Fursikov. Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary. Russian Journal of Mathematical Physics, vol.4 :4, p. 429-448, 1996. | Zbl

[15] J.-M. Coron. Control and Nonlinearity. Mathematical Surveys and Monographs, vol. 136. American Mathematical Society, 2007. | DOI

[16] L. Desvillettes and C. Villani. On the trend to global equilibrium in spatially inhomogeneous systems. Part I : the linear Fokker-Planck equation. Comm. in Pure and App. Math. vol.54 : 1, pp. 1-42. 2001. | DOI | MR | Zbl

[17] L. Desvillettes, F. Golse and V. Ricci. The mean-field limit for solid particles in a Navier-Stokes flow. J. Statistical Physics. vol. 131 :5, pp. 941-967. 2008. | DOI | MR | Zbl

[18] J. Dolbeault, C. Mouhot and C. Schmeiser. Hypocoercivity for linear kinetic equations conserving mass. Trans. Amer. Math. Soc. 367. pp. 3807-3828. 2015. | DOI | MR | Zbl

[19] L. Escauriaza, G. Seregin and V. Sverák. Backward Uniqueness for Parabolic Operators. Arch. Rational Mech. Anal. vol.169. pp. 147-157. 2003. | DOI | MR | Zbl

[20] A.V. Fursikov and O.Yu. Imanuvilov. Controllability of evolution equations. Lecture Note Series, Seoul National University. Research Institute of Mathematical Global Analysis, vol. 34. Seoul. 1996. | Zbl

[21] I. Gasser, P. E. Jabin and B. Perthame. Regularity and propagation of moments in some nonlinear Vlasov systems. Proc. Roy. Soc. Edinburgh Sect. A, vol. 130, pp.1259-1273. 2000. | DOI | MR | Zbl

[22] Y. Giga and H. Sohr. Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. Vol.102 :1, pp. 72–94. 1991. | DOI | Zbl

[23] O. Glass. On the controllability of the Vlasov-Poisson system. J. Diff. Eq. vol. 195, pp. 332-379. 2003. | DOI | MR | Zbl

[24] O. Glass. La méthode du retour en contrôlabilité et ses applications en mécanique des fluides (d’après J.-M. Coron et al.) Séminaire Bourbaki 2010/2011. Astérisque, vol. 348, pp. 1-16. 2012. | Zbl

[25] O. Glass and D. Han-Kwan. On the controllability of the Vlasov-Poisson system in the presence of external force fields. J. Diff. Eq. vol. 252. pp. 5453-5491. 2012. | DOI | MR | Zbl

[26] O. Glass and D. Han-Kwan. On the controllability of the relativistic Vlasov-Maxwell system. J. Math. Pures et Appl. vol. 103. pp. 695-740. 2015. | DOI | MR | Zbl

[27] R.T. Glassey. The Cauchy problem in kinetic theory. SIAM. 1996. | DOI | Zbl

[28] F. Golse, C. Imbert, C. Mouhot and A. Vasseur. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation. 2016. | arXiv | Zbl

[29] M. González-Burgos and L. de Teresa. Some results on controllability for linear and non linear heat equations in unbounded domain. Adv. Diff. Eq. vol. 12 :11, pp.1201-1240, 2007. | Zbl

[30] T. Goudon, P.E. Jabin and A. Vasseur. Hydrodynamic limits for Vlasov-Stokes equations. I. Light particles regime. Indiana Univ. Math. J., vol.53, pp.1495–1513. 2004. | DOI | Zbl

[31] T. Goudon, P.E. Jabin and A. Vasseur. Hydrodynamic limits for Vlasov-Stokes equations. II. Fine particles regime, Indiana Univ. Math. J., vol.53, pp.1517–1536. 2004. | DOI

[32] K. Hamdache. Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Industr. Appl. Math. vol. 15. pp. 51-74. 1998. | DOI | MR | Zbl

[33] F. Hérau and F. Nier. Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential. Arch. Rat. Mech. An. vol. 171 :2. pp. 151-218 .2004. | DOI | MR | Zbl

[34] F. Hérau. Short and long time behavior of the Fokker-Planck equation in a confining potential and applications. J. Funct. Anal. Vol. 244 :1. pp. 95-118. 2007. | DOI | MR

[35] L. Hörmander. Hypoelliptic second order differential equations. Acta Mathematica. vol. 119 :1, pp. 147-171, 1967. | DOI | MR | Zbl

[36] P. E Jabin and B. Perthame. Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid. Modelling in applied sciences, a kinetic theory approach. Model. Simul. Sci. Eng. Tech. Birkhauser. Boston. 2000. | DOI | Zbl

[37] P. E. Jabin. Large time concentrations for solutions to kinetic equations with energy dissipation. Comm. Partial Differential Equations. vol.25, pp. 541-557. 2000. | DOI | MR | Zbl

[38] A.N. Kolmogorov, Zufällige Bewegungen, Ann. of Math. vol. 2 :35, pp. 116–117, 1934. | DOI | MR

[39] J. Le Rousseau. Carleman estimates and some application to control theory. Lecture Notes in Mathematics / C.I.M.E. Foundation Subseries J.-M. Coron and P. Cannarsa editors. Springer. 2010.

[40] J. Le Rousseau and G. Lebeau. On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM Control Optim. Calc. Var. vol. 18, pp. 712-747, 2012. | DOI | MR | Zbl

[41] J. Le Rousseau and I. Moyano. Null-controllability of the Kolmogorov equation in the whole phase space. J. Differential Equations. Vol. 260. pp. 3193-3233. 2016. | DOI | MR | Zbl

[42] G. Lebeau and L. Robbiano. Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations, vol. 20, pp. 335-356, 1995. | DOI | Zbl

[43] G. Lebeau and E. Zuazua. Null-controllability of a system of linear thermoelasticity. Arch. Rational Mech. Anal., vol. 141, pp. 297-329, 1998. | DOI | MR | Zbl

[44] J.-L. Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués : Perturbations. Masson. 1988. | Zbl

[45] S. Micu and E. Zuazua. On the lack of null controllability of the heat equation on the half-line. Transactions of the A.M.S. vol. 353 :4. pp. 1635-1659. 2000. | Zbl

[46] L. Miller. On the null controllability of the heat equation in unbounded domains. Bulletin des Sciences Mathématiques, vol. 129 :2, pp.175-185. 2005 | DOI | MR | Zbl

[47] L. Miller. Unique continuation estimates estimats for the Laplacian and the heat equation on non-compact manifolds. Math. Res. Lett. vol. 12 :1, pp. 37-47, 2005. | DOI | MR | Zbl

[48] C. Mouhot and C. Villani. Kinetic Theory. In Princeton Companion to Applied Mathematics, N.J. Higham ed. 2015. | DOI

[49] C. Mouhot. Quelques résultats d’hypocoercitivité en théorie cinétique collisionnelle. Séminaire d’EDPs Laurent Schwartz. 2007–2008, Exp. No. XVI. École polytechnique.

[50] I. Moyano. On the controllability of the 2-D Vlasov-Stokes system. Communications in Mathematical Sciences, à paraître. 2016. | DOI | MR | Zbl

[51] I. Moyano. Local null-controllability of the 2-D Vlasov-Navier-Stokes system. Soumis pour publication. 2016. | arXiv

[52] I. Moyano. Contrôlabilité de quelques équations cinétiques, paraboliques dégénérées et de Schrödinger. Manuscrit de Thèse, École polytechnique. tel-01412038v1, 2016.

[53] K.D. Phung. Contrôle et stabilisation d’ondes électromagnétiques. ESAIM : COCV. vol. 5. pp. 87-137. 2000. | DOI | Zbl

[54] S. Ukai and T. Okabe. On classical solutions in the large in time of two-dimensional Vlasov’s equation. Osaka J. Math. vol. 15 :2. pp. 245-261. 1978. | Zbl

[55] C. Villani, Hypocoercivity. Mem. AMS. 2008. | DOI | MR

Cité par Sources :